GluDy allele variations in Aegilops tauschii and Triticum aestivum: Implications for the origins of hexaploid wheats

Rachel J. Giles, Terence A. Brown

    Research output: Contribution to journalArticlepeer-review

    Abstract

    To investigate the evolution and geographical origins of hexaploid wheat, we examined a 284 bp sequence from the promoter region of the GluDy locus, coding for the y subunit of high-molecular-weight glutenin. Fourteen different alleles were found in 100 accessions of Aegilops tauschii and 169 of Triticum aestivum. Two alleles were present in both species; the other 7 alleles from Ae. tauschii and 5 from T. aestivum were unique to their respective species. The two shared alleles differed at only one nucleotide position within the region sequenced, but their apparent association with the common haplotypes GluD1a and GluD1d, which have substantial differences within their GluDy coding regions, makes it unlikely that the alleles evolved independently in Ae. tauschii and T. aestivum. The results therefore support previous studies which suggest that there were at least two Ae. tauschii sources that contributed germplasm to the D genome of T. aestivum. The number of alleles present in T. aestivum, and the nucleotide diversity of these alleles, indicates that this region of the D genome has undergone relatively rapid change since polyploidisation. Ae. tauschii from Syria and Turkey had relatively high nucleotide diversity and possessed all the major GluDy alleles, indicating that these populations are probably ancient and not the result of adventive spread. The presence in the Turkish population of both of the shared alleles suggests that hexaploid wheat is likely to have originated in southeast Turkey or northern Syria, within the Fertile Crescent and near to the farming villages at which archaeological remains of hexaploid wheats are first found. A second, more recent, hexaploidisation probably occurred in Iran.
    Original languageEnglish
    Pages (from-to)1563-1572
    Number of pages9
    JournalTheoretical and Applied Genetics
    Volume112
    Issue number8
    DOIs
    Publication statusPublished - May 2006

    Fingerprint

    Dive into the research topics of 'GluDy allele variations in Aegilops tauschii and Triticum aestivum: Implications for the origins of hexaploid wheats'. Together they form a unique fingerprint.

    Cite this