GrandPrix: Scaling up the Bayesian GPLVM for single-cell data

Sumon Ahmed, Magnus Rattray, Alexis Boukouvalas

Research output: Contribution to journalArticlepeer-review


The Gaussian Process Latent Variable Model (GPLVM) is a popular approach for dimensionality reduction of single-cell data and has been used for pseudotime estimation with capture time information. However, current implementations are computationally intensive and will not scale up to modern droplet-based single-cell datasets which routinely profile many tens of thousands of cells.

We provide an efficient implementation which allows scaling up this approach to modern single-cell datasets. We also generalize the application of pseudotime inference to cases where there are other sources of variation such as branching dynamics. We apply our method on microarray, nCounter, RNA-seq, qPCR and droplet-based datasets from different organisms. The model converges an order of magnitude faster compared to existing methods whilst achieving similar levels of estimation accuracy. Further, we demonstrate the flexibility of our approach by extending the model to higher-dimensional latent spaces that can be used to simultaneously infer pseudotime and other structure such as branching. Thus, the model has the capability of producing meaningful biological insights about cell ordering as well as cell fate regulation.

Availability and implementation
Software available at
Original languageEnglish
Early online date2 Jul 2018
Publication statusE-pub ahead of print - 2 Jul 2018


Dive into the research topics of 'GrandPrix: Scaling up the Bayesian GPLVM for single-cell data'. Together they form a unique fingerprint.

Cite this