TY - JOUR
T1 - Graphene and Water-Based Elastomer Nanocomposites – A Review
AU - Nwosu, Christian
AU - Iliut, Maria
AU - Vijayaraghavan, Aravind
N1 - Funding Information:
CNN acknowledges sponsorship from the Technology Development Fund (PTDF), Nigeria.
Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2021/6/7
Y1 - 2021/6/7
N2 - Water-based elastomers (WBEs) are polymeric elastomers in aqueous systems. WBEs have recently continued to gain wide acceptability by both academia and industry due to their remarkable environmental and occupational safety friendly nature, as a non-toxic elastomeric dispersion with low-to-zero volatile organic compound (VOC) emission. However, their inherent poor mechanical and thermal properties remain a drawback to these sets of elastomers. Hence, nano-fillers such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs) are being employed for the reinforcement and enhancement of this set of elastomers. This work is geared towards a critical review and summation of the state-of-the-art developments of graphene enhanced water-based elastomer composites (G-WBEC), including graphene and composite production processes, properties, characterisation techniques and potential commercial applications. The dominant production techniques, such as emulsion mixing and in situ polymerisation processes, which include Pickering emulsion, mini-emulsion and micro-emulsion, as well as ball-milling approach, are systematically evaluated. Details of the account of mechanical properties, electrical conductivity, thermal stability and thermal conductivity enhancements, as well as multifunctional properties of G-WBEC are discussed, with further elaboration on the structure-property relationship effects (such as dispersion and filler-matrix interface) through effective and non-destructive characterisation tools like Raman and XRD, among others. The paper also evaluates details of the current application attempts and potential commercial opportunities for G-WBEC utilisation in aerospace, automotive, oil and gas, biomedicals, textiles, sensors, electronics, solar energy, and thermal management. This journal is
AB - Water-based elastomers (WBEs) are polymeric elastomers in aqueous systems. WBEs have recently continued to gain wide acceptability by both academia and industry due to their remarkable environmental and occupational safety friendly nature, as a non-toxic elastomeric dispersion with low-to-zero volatile organic compound (VOC) emission. However, their inherent poor mechanical and thermal properties remain a drawback to these sets of elastomers. Hence, nano-fillers such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs) are being employed for the reinforcement and enhancement of this set of elastomers. This work is geared towards a critical review and summation of the state-of-the-art developments of graphene enhanced water-based elastomer composites (G-WBEC), including graphene and composite production processes, properties, characterisation techniques and potential commercial applications. The dominant production techniques, such as emulsion mixing and in situ polymerisation processes, which include Pickering emulsion, mini-emulsion and micro-emulsion, as well as ball-milling approach, are systematically evaluated. Details of the account of mechanical properties, electrical conductivity, thermal stability and thermal conductivity enhancements, as well as multifunctional properties of G-WBEC are discussed, with further elaboration on the structure-property relationship effects (such as dispersion and filler-matrix interface) through effective and non-destructive characterisation tools like Raman and XRD, among others. The paper also evaluates details of the current application attempts and potential commercial opportunities for G-WBEC utilisation in aerospace, automotive, oil and gas, biomedicals, textiles, sensors, electronics, solar energy, and thermal management. This journal is
UR - http://www.scopus.com/inward/record.url?scp=85107573008&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/b81a5799-974a-33c6-9ebe-e1e82cf357db/
U2 - 10.1039/D1NR01324F
DO - 10.1039/D1NR01324F
M3 - Review article
SN - 2040-3364
VL - 13
SP - 9505
EP - 9540
JO - Nanoscale
JF - Nanoscale
IS - 21
ER -