Guidelines for using sigQC for systematic evaluation of gene signatures

Andrew Dhawan, Alessandro Barberis, Wei Chen Cheng, Enric Domingo, Catharine West, Tim Maughan, Jacob G. Scott, Adrian L. Harris, Francesca M. Buffa

Research output: Contribution to journalArticlepeer-review


With the increased use of next-generation sequencing generating large amounts of genomic data, gene expression signatures are becoming critically important tools for the interpretation of these data, and are poised to have a substantial effect on diagnosis, management, and prognosis for a number of diseases. It is becoming crucial to establish whether the expression patterns and statistical properties of sets of genes, or gene signatures, are conserved across independent datasets. Conversely, it is necessary to compare established signatures on the same dataset to better understand how they capture different clinical or biological characteristics. Here we describe how to use sigQC, a tool that enables a streamlined, systematic approach for the evaluation of previously obtained gene signatures across multiple gene expression datasets. We implemented sigQC in an R package, making it accessible to users who have knowledge of file input/output and matrix manipulation in R and a moderate grasp of core statistical principles. SigQC has been adopted in basic biology and translational studies, including, but not limited to, the evaluation of multiple gene signatures for potential clinical use as cancer biomarkers. This protocol uses a previously obtained signature for breast cancer metastasis as an example to illustrate the critical quality control steps involved in evaluating its expression, variability, and structure in breast tumor RNA-sequencing data, a different dataset from that in which the signature was originally derived. We demonstrate how the outputs created from sigQC can be used for the evaluation of gene signatures on large-scale gene expression datasets.

Original languageEnglish
JournalNature protocols
Early online date10 Apr 2019
Publication statusPublished - 2019

Research Beacons, Institutes and Platforms

  • Manchester Cancer Research Centre


Dive into the research topics of 'Guidelines for using sigQC for systematic evaluation of gene signatures'. Together they form a unique fingerprint.

Cite this