Abstract
Bone tissue engineering has become one of the most promising therapeutic methods to treat bone defects. A suitable scaffolding material to regenerate new bone tissues should have a high specific surface area, high porosity and a suitable surface structure which benefit cell attachment, proliferation, and differentiation. In this study, an acetone post-treatment strategy was developed to generate heterogeneous structure. After PLLA/PCL nanofibrous membranes were electrospun and collected, they were treated with acetone to generate a highly porous structure. Meanwhile, part of PCL was extracted from the fibre and enriched on the fibre surface. The cell affinity of the nanofibrous membrane was verified by human osteoblast-like cells assay. The proliferation rate of heterogeneous samples increased 190.4 %, 265.5 % and 137.9 % at day 10 compared with pristine samples. These results demonstrated that the heterogeneous PLLA/PCL nanofibrous membranes could enhance osteoblast adhesion and proliferation. With high surface area (average surface area 36.302 m2/g) and good mechanical properties (average Young's modulus 1.65 GPa and average tensile strength 5.1 MPa), the heterogeneous PLLA/PCL membrane should have potential applications in the field of bone regeneration.
Original language | English |
---|---|
Article number | 123781 |
Journal | International Journal of Biological Macromolecules |
Volume | 235 |
Issue number | 123781 |
Early online date | 8 Mar 2023 |
DOIs | |
Publication status | Published - 30 Apr 2023 |
Keywords
- Bone tissue regeneration
- Electrospinning
- Hierarchical porous structure
- Poly(L-lactic acid)
- Polycaprolactone