Abstract
Fibrous membranes played an important role to prepare tubular scaffolds for muscular artery regeneration. In this study, a strategy has been developed to combine silk fibroin (SF) with highly porous electrospun poly(L-lactic acid) (PLLA) fibrous membrane towards vascular scaffolds. After PLLA fibres were electrospun and collected, they were immersed into acetone to generate a porous structure with ultra-high surface area. While the pores on PLLA fibres were fulfilled with SF solution and dried, SF was coated uniformly and tightly on PLLA fibres. A multi-layer tubular structure of the tunica media was simulated by winding and stacking a strip of electrospun fibrous membrane. In vitro viability and morphology studies of A7r5 smooth muscle cells were undertaken for up to 14 days. Because the hydrophilicity of SF/PLLA composite fibres were improved dramatically, it had a positive effect on cell adhesion rate (97%) and proliferation (64.4%). Moreover, good cell morphology was observed via a multiphoton laser confocal microscope on SF/PLLA bioactive materials. These results demonstrated that the hierarchical porous SF/PLLA fibrous membranes are promising off-the-shelf scaffolds for muscular artery regeneration.
Original language | English |
---|---|
Pages (from-to) | 1111-1120 |
Number of pages | 10 |
Journal | International Journal of Biological Macromolecules |
Volume | 166 |
Early online date | 4 Nov 2020 |
DOIs | |
Publication status | Published - 4 Nov 2020 |
Keywords
- Electrospinning
- Hierarchical porosity
- Poly(L-lactic acid)
- Silk fibroin
- Vascular scaffold