High-spin rotational structures in 76Kr

J. J. Valiente-Dobón, C. E. Svensson, C. D. O'Leary, I. Ragnarsson, C. Andreoiu, D. E. Appelbe, R. A E Austin, G. C. Ball, J. A. Cameron, M. P. Carpenter, R. M. Clark, M. Cromaz, D. Dashdorj, P. Fallon, P. Finlay, S. J. Freeman, P. E. Garrett, A. Görgen, G. F. Grinyer, D. F. HodgsonB. Hyland, D. Jenkins, F. Johnston-Theasby, P. Joshi, N. S. Kelsall, A. O. Macchiavelli, F. Moore, G. Mukherjee, A. A. Phillips, W. Reviol, D. Sarantites, M. A. Schumaker, D. Seweryniak, M. B. Smith, J. C. Waddington, R. Wadsworth, D. Ward, S. J. Williams

    Research output: Contribution to journalArticlepeer-review

    Abstract

    High-spin states in 36 76Kr 40 have been populated in the 40Ca( 40Ca,4p) 76Kr fusion-evaporation reaction at a beam energy of 165 MeV and studied using the Gammasphere and Microball multidetector arrays. The ground-state band and two signature-split negative parity bands of 76Kr have been extended to ∼30ℏ. Lifetime measurements using the Doppler-shift attenuation method show that the transition quadrapole moment of these three bands decrease as they approach their maximum-spin states. Two signatures of a new rotational structure with remarkably rigid rotational behavior have been identified. The high-spin properties of these rotational bands are analyzed within the framework of configuration-dependent cranked Nilsson-Strutinsky calculations. © 2005 The American Physical Society.
    Original languageEnglish
    Article number034311
    JournalPhysical Review C - Nuclear Physics
    Volume71
    Issue number3
    DOIs
    Publication statusPublished - Mar 2005

    Fingerprint

    Dive into the research topics of 'High-spin rotational structures in 76Kr'. Together they form a unique fingerprint.

    Cite this