High-temperature crack growth in a Ni-base superalloy during sustained load

M Hörnqvist, L Viskari, K L Moore, K Stiller

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The high-temperature sustained load crack growth behaviour of a Ni-base superalloy was investigated using a combination of mechanical testing in controlled atmosphere, fractographical and microanalytical investigations, and finite element modelling. The results show that the local crack front geometry is un-even on two scales - jaggedness on the scale of 100. μm was observed in all specimens, whereas mm-scale waviness could occasionally be observed. The jaggedness can be explained by a percolation-type crack growth along weaker grain boundaries, whereas the large-scale waviness is presumably due to larger regions of the material having specific grain texture with high crack growth resistance. The un-even crack front is shown to potentially have considerable effects on the loading conditions at the crack tip, whereas ligaments of un-cracked material in the crack wake are deemed to have less effect on the crack tip loading due to their low area fraction. The ligaments fail intergranularly in the wake as the crack grows in the present case, as opposed to by creep fracture as previously proposed. Finally, the plastically deformed regions about the crack and crack tip are shown not to exhibit any elevated oxygen levels, implying that the damage in these regions is purely mechanical. © 2014 Elsevier B.V.
    Original languageEnglish
    Pages (from-to)131-140
    Number of pages10
    JournalMaterials Science and Engineering A
    Volume609
    DOIs
    Publication statusPublished - 2014

    Keywords

    • Grain boundaries
    • Mechanical properties
    • Superalloy
    • Sustained load crack growth
    • Crack tips
    • Cracks
    • Mechanical testing
    • Nickel
    • Solvents
    • Superalloys
    • Wakes
    • Crack front geometry
    • Crack-growth resistance
    • Finite element modelling
    • Growth behaviour
    • High temperature
    • Loading condition
    • Ni-base superalloys
    • Sustained loads
    • Loading

    Fingerprint

    Dive into the research topics of 'High-temperature crack growth in a Ni-base superalloy during sustained load'. Together they form a unique fingerprint.

    Cite this