TY - JOUR
T1 - HMG20B stabilizes association of LSD1 with GFI1 on chromatin to confer transcription repression and leukemia cell differentiation block
AU - Maiques-Diaz, Alba
AU - Nicosia, Luciano
AU - Basma, Naseer J
AU - Romero-Camarero, Isabel
AU - Camera, Francesco
AU - Spencer, Gary J
AU - Amaral, Fabio M R
AU - Simeoni, Fabrizio
AU - Wingelhofer, Bettina
AU - Williamson, Andrew J K
AU - Pierce, Andrew
AU - Whetton, Anthony D
AU - Somervaille, Tim C P
N1 - © 2022. The Author(s).
PY - 2022/10
Y1 - 2022/10
N2 - Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1. To explore the wider consequences of LSD1 inhibition on the LSD1 protein complex we applied mass spectrometry technologies. We discovered that the interaction of the HMG-box protein HMG20B with LSD1 was also disrupted by LSD1 inhibition. Downstream investigations revealed that HMG20B is co-located on chromatin with GFI1 and LSD1 genome-wide; the strongest HMG20B binding co-locates with the strongest GFI1 and LSD1 binding. Functional assays demonstrated that HMG20B depletion induces leukemia cell differentiation and further revealed that HMG20B is required for the transcription repressor activity of GFI1 through stabilizing LSD1 on chromatin at GFI1 binding sites. Interaction of HMG20B with LSD1 is through its coiled-coil domain. Thus, HMG20B is a critical component of the GFI1:LSD1 transcription repressor complex which contributes to leukemia cell differentiation block.
AB - Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1. To explore the wider consequences of LSD1 inhibition on the LSD1 protein complex we applied mass spectrometry technologies. We discovered that the interaction of the HMG-box protein HMG20B with LSD1 was also disrupted by LSD1 inhibition. Downstream investigations revealed that HMG20B is co-located on chromatin with GFI1 and LSD1 genome-wide; the strongest HMG20B binding co-locates with the strongest GFI1 and LSD1 binding. Functional assays demonstrated that HMG20B depletion induces leukemia cell differentiation and further revealed that HMG20B is required for the transcription repressor activity of GFI1 through stabilizing LSD1 on chromatin at GFI1 binding sites. Interaction of HMG20B with LSD1 is through its coiled-coil domain. Thus, HMG20B is a critical component of the GFI1:LSD1 transcription repressor complex which contributes to leukemia cell differentiation block.
KW - Humans
KW - Cell Differentiation/genetics
KW - Chromatin/genetics
KW - DNA-Binding Proteins/genetics
KW - Histone Demethylases/metabolism
KW - Leukemia, Myeloid, Acute/genetics
KW - Transcription Factors/genetics
U2 - 10.1038/s41388-022-02471-y
DO - 10.1038/s41388-022-02471-y
M3 - Article
C2 - 36171271
SN - 0950-9232
VL - 41
SP - 4841
EP - 4854
JO - Oncogene
JF - Oncogene
IS - 44
ER -