TY - JOUR
T1 - Identification of asp-130 as the catalytic nucleophile in the main α-galactosidase from Phanerochaete chrysosporium, a family 27 glycosyl hydrolase
AU - Hart, D. O.
AU - He, S.
AU - Chany, C. J.
AU - Withers, S. G.
AU - Sims, P. F G
AU - Sinnott, M. L.
AU - Brumer, H.
PY - 2000/8/15
Y1 - 2000/8/15
N2 - Characterization of the complete gene sequence encoding the α-galactosidase from Phanerochaete chrysosporium confirms that this enzyme is a member of glycosyl hydrolase family 27 [Henrissat, B., and Bairoch, A. (1996) Biochem. J. 316, 695-696]. This family, together with the family 36 α-galactosidases, forms glycosyl hydrolase clan GH-D, a superfamily of α-galactosidases, α-N-acetylgalactosaminidases, and isomaltodextranases which are likely to share a common catalytic mechanism and structural topology. Identification of the active site catalytic nucleophile was achieved by labeling with the mechanism-based inactivator 2',4',6'-trinitrophenyl 2-deoxy-2,2-difiuoro-α-D-lyxo-hexopyranoside; this inactivator was synthesized by anomeric deprotection of the known 1,3,4,6-tetra-O-acetyl-2-deoxy-2,2-difluoro-D-lyxo-hexopyranoside [McCarter, J. D., Adam, M. J., Braun, C., Namchuk, M., Tull, D., and Withers, S. G. (1993) Carbohydr. Res. 249, 77-90], picrylation with picryl fluoride and 2,6-di-tert-butylpyridine, and O-deacetylation with methanolic HC1. Enzyme inactivation is a result of the formation of a stable 2-deoxy-2,2-difluoro-β-D-lyxo-hexopyranosyl-enzyme intermediate. Following peptic digestion, comparative liquid chromatographic/mass spectrometric analysis of inactivated and control enzyme samples served to identify the covalently modified peptide. After purification of the labeled peptide, benzylamine was shown to successfully replace the 2-deoxy-2,2-difluoro-D-lyxo-hexopyranosyl peptidyl ester by aminolysis. The labeled amino acid was identified as Asp-130 of the mature protein by further tandem mass spectrometric analysis of the native and derivatized peptides in combination with Edman degradation analysis. Asp-130 is found within the sequence YLKYDNC, which is highly conserved in all known family 27 glycosyl hydrolases.
AB - Characterization of the complete gene sequence encoding the α-galactosidase from Phanerochaete chrysosporium confirms that this enzyme is a member of glycosyl hydrolase family 27 [Henrissat, B., and Bairoch, A. (1996) Biochem. J. 316, 695-696]. This family, together with the family 36 α-galactosidases, forms glycosyl hydrolase clan GH-D, a superfamily of α-galactosidases, α-N-acetylgalactosaminidases, and isomaltodextranases which are likely to share a common catalytic mechanism and structural topology. Identification of the active site catalytic nucleophile was achieved by labeling with the mechanism-based inactivator 2',4',6'-trinitrophenyl 2-deoxy-2,2-difiuoro-α-D-lyxo-hexopyranoside; this inactivator was synthesized by anomeric deprotection of the known 1,3,4,6-tetra-O-acetyl-2-deoxy-2,2-difluoro-D-lyxo-hexopyranoside [McCarter, J. D., Adam, M. J., Braun, C., Namchuk, M., Tull, D., and Withers, S. G. (1993) Carbohydr. Res. 249, 77-90], picrylation with picryl fluoride and 2,6-di-tert-butylpyridine, and O-deacetylation with methanolic HC1. Enzyme inactivation is a result of the formation of a stable 2-deoxy-2,2-difluoro-β-D-lyxo-hexopyranosyl-enzyme intermediate. Following peptic digestion, comparative liquid chromatographic/mass spectrometric analysis of inactivated and control enzyme samples served to identify the covalently modified peptide. After purification of the labeled peptide, benzylamine was shown to successfully replace the 2-deoxy-2,2-difluoro-D-lyxo-hexopyranosyl peptidyl ester by aminolysis. The labeled amino acid was identified as Asp-130 of the mature protein by further tandem mass spectrometric analysis of the native and derivatized peptides in combination with Edman degradation analysis. Asp-130 is found within the sequence YLKYDNC, which is highly conserved in all known family 27 glycosyl hydrolases.
U2 - 10.1021/bi0008074
DO - 10.1021/bi0008074
M3 - Article
SN - 0006-2960
VL - 39
SP - 9826
EP - 9836
JO - Biochemistry
JF - Biochemistry
IS - 32
ER -