Identification of Nonlinear State-Space Systems from Heterogeneous Datasets

Wei Pan, Ye Yuan, Lennart Ljung, Jorge Goncalves, Guy Bart Stan

Research output: Contribution to journalArticlepeer-review

Abstract

This paper proposes a new method to identify nonlinear state-space systems from heterogeneous datasets. The method is described in the context of identifying biochemical/gene networks (i.e., identifying both reaction dynamics and kinetic parameters) from experimental data. Simultaneous integration of various datasets has the potential to yield better performance for system identification. Data collected experimentally typically vary depending on the specific experimental setup and conditions. Typically, heterogeneous data are obtained experimentally through 1) replicate measurements from the same biological system or 2) application of different experimental conditions such as changes/perturbations in biological inductions, temperature, gene knock-out, gene over-expression, etc. We formulate here the identification problem using a Bayesian learning framework that makes use of 'sparse group' priors to allow inference of the sparsest model that can explain the whole set of observed heterogeneous data. To enable scale up to large number of features, the resulting nonconvex optimization problem is relaxed to a reweighted Group Lasso problem using a convex-concave procedure. As an illustrative example of the effectiveness of our method, we use it to identify a genetic oscillator (generalized eight species repressilator). Through this example we show that our algorithm outperforms Group Lasso when the number of experiments is increased, even when each single time-series dataset is short. We additionally assess the robustness of our algorithm against noise by varying the intensity of process noise and measurement noise.

Original languageEnglish
Pages (from-to)737-747
Number of pages11
JournalIEEE Transactions on Control of Network Systems
Volume5
Issue number2
DOIs
Publication statusPublished - Jun 2018

Keywords

  • biological system modeling
  • system identification

Fingerprint

Dive into the research topics of 'Identification of Nonlinear State-Space Systems from Heterogeneous Datasets'. Together they form a unique fingerprint.

Cite this