Abstract
Defining the immune mechanisms underlying protective immunity to helminth infection remains an important challenge. Here we report that lung CD4+ T cells and Group 2 innate lymphoid cells (ILC2s) work in concert to block Nippostrongylus brasiliensis (Nb) development in the parenchyma within 48 h in mice. Immune-damaged larvae have a striking morphological defect that is dependent on the expansion of IL-13-producing ILC2 and CD4+ T cells, and the activation of M2 macrophages. This T-cell requirement can be bypassed by administration of IL-2 or IL-33, resulting in expansion of IL-13-producing ILC2s and larval killing. Depletion of ILC2s inhibits larval killing in IL-2-treated mice. Our results broaden understanding of ILC2’s role in immunity to helminths by demonstrating that they not only act as alarmin sensors, but can also be sustained by CD4+ T cells, ensuring both the prompt activation and the maintenance of IL-13-dependent M2 macrophage immunity in the lung.
Original language | English |
---|---|
Article number | 6970 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Nature Communications |
Volume | 6 |
DOIs | |
Publication status | Published - 27 Apr 2015 |