TY - GEN
T1 - Image based cardiac acceleration map using statistical shape and 3D+t myocardial tracking models; in-vitro study on heart phantom
AU - Pashaei, Ali
AU - Piella, Gemma
AU - Planes, Xavier
AU - Duchateau, Nicolas
AU - De Caralt, Teresa María
AU - Sitges, Marta
AU - Frangi, Alejandro F.
PY - 2013
Y1 - 2013
N2 - It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal diffeomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.
AB - It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal diffeomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.
KW - Acceleration measurement
KW - Cardiac motion
KW - Cardiac phantom
KW - Statistical shape models
KW - Temporal image registration
UR - http://www.scopus.com/inward/record.url?scp=84878603006&partnerID=8YFLogxK
U2 - 10.1117/12.2008068
DO - 10.1117/12.2008068
M3 - Conference contribution
AN - SCOPUS:84878603006
SN - 9780819494450
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Medical Imaging 2013
T2 - Medical Imaging 2013: Image-Guided Procedures, Robotic Interventions, and Modeling
Y2 - 12 February 2013 through 14 February 2013
ER -