Image Based Data Mining Using Per-voxel Cox Regression

Research output: Contribution to journalArticlepeer-review

Abstract

Image Based Data Mining (IBDM) is a novel analysis technique allowing the interrogation of large amounts of routine radiotherapy data. Using this technique, unexpected correlations have been identified between dose close to the prostate and biochemical relapse, and between dose to the base of the heart and survival in lung cancer. However, most analyses to date have considered only dose when identifying a region of interest, with confounding variables accounted for post-hoc, most often using a multivariate Cox regression. In this work, we introduce a novel method to account for confounding variables directly in the analysis, by performing a Cox regression in every voxel of the dose distribution, and apply it in the analysis of a large cohort of lung cancer patients. Our method produces three-dimensional maps of hazard for clinical variables, accounting for dose at each spatial location in the patient. Results confirm that a region of interest exists in the base of the heart where those patients with poor performance status (PS), PS > 1, have a stronger adverse reaction to incidental dose, but that the effect changes when considering other clinical variables, with patient age becoming dominant. Analyses such as this will help shape future clinical trials in which hypotheses generated by the analysis will be tested.
Original languageEnglish
JournalFrontiers in Oncology
Early online date21 Jul 2020
DOIs
Publication statusPublished - 2020

Research Beacons, Institutes and Platforms

  • Manchester Cancer Research Centre

Fingerprint

Dive into the research topics of 'Image Based Data Mining Using Per-voxel Cox Regression'. Together they form a unique fingerprint.

Cite this