Impact of lens care solutions on protein deposition on soft contact lenses

Negar Babaei Omali, Miriam Heynen, Lakshman N. Subbaraman, Dominik Papinski, Carol Lakkis, Sarah Smith, Philip Morgan, David A. Berntsen, Jason J. Nichols, Lyndon W. Jones, Jessica H. Mathew, Stephanie M. Cox, Katherine M. Bickle, Daniel R. Powell, Jared Cox, William L. Miller, Ashley Wallace-Tucker, Sabrina Charrier, Yi Ju Chen, Laura CardenasSonia Huerta, Karen Dionne, Carole Maldonado-Codina, Andrew Plowright, Gillian Howarth, Neil Chatterjee, Aftab Mirza, Kathy Dumbleton, Marc Schulze, Amir M. Moezzi, Doerte Luensmann, William Ngo, Lindsay Paquette, Sruthi Srinivasan, Jalaiah Varikooty, Jane Johnson, Marina Simpson, Brad Leona Voss, Lynn Ryan, Nadeera Careless, Alexandra Smith, Jaya Dantam, David McCanna, Sheila B. Hickson-Curran, Youssef Toubouti, Zohra Fadli, Mark Witold Lada

Research output: Contribution to journalArticlepeer-review

1151 Downloads (Pure)

Abstract

Purpose. To evaluate the effect of four contemporary lens care solutions on total protein, total lysozyme, and active lysozyme extracted from three contact lens materials. Methods. Adapted contact lens wearers were recruited at three sites, and all subjects were randomly assigned to daily wear of either etafilcon A, galyfilcon A, or senofilcon A for 2 weeks. Four lens care solutions (Biotrue, OPTI-FREE PureMoist, RevitaLens OcuTec, and ClearCare) were used by each subject in random order with a new pair of lenses after a washout period between solutions of at least 4 days. After 2 weeks of daily wear, contact lenses were collected for analysis. Proteins were extracted from a subset of contact lenses (n = 568) and total protein, total lysozyme, and lysozyme activity were quantified using a modified Bradford assay, an enzyme-linked immunosorbent assay, and a micrococcal assay, respectively. Results. Higher levels of total protein were extracted from etafilcon A when used with Biotrue compared to other solutions (p = 0.0001). There were higher levels of total lysozyme extracted from galyfilcon A lenses when used with PureMoist than with Biotrue or Clear Care (p <0.006). Higher total lysozyme was extracted from senofilcon A when used with RevitaLens OcuTec compared to Biotrue (p = 0.002). Lower lysozyme activity was recovered from senofilcon A lenses with RevitaLens OcuTec when compared to all other care solutions (all p <0.004). When Biotrue, PureMoist, or RevitaLens OcuTec were used, higher total lysozyme was extracted from galyfilcon A compared to senofilcon A(p <0.01). When RevitaLens OcuTec was used, higher levels of active lysozyme were extracted from galyfilcon A compared to senofilcon A (p = 0.02). Conclusions. The ability of lens care solutions to remove protein from lenses varies depending upon the care solution composition and also the polymeric make-up of the contact lens material.

Original languageEnglish
Pages (from-to)963-972
Number of pages10
JournalOptometry and Vision Science
Volume93
Issue number8
Early online date26 Jul 2016
DOIs
Publication statusPublished - Aug 2016

Keywords

  • Contact lens
  • Lens care solutions
  • Lysozyme
  • Protein deposition

Fingerprint

Dive into the research topics of 'Impact of lens care solutions on protein deposition on soft contact lenses'. Together they form a unique fingerprint.

Cite this