Implementation of a Modular Growing When Required Neural Gas Architecture for Recognition of Falls: Neural Information Processing 23rd International Conference, ICONIP 2016, Kyoto, Japan, October 16–21, 2016, Proceedings

F. Belmonte Klein, K.S. Štěpánová, A.C. Cangelosi

Research output: Chapter in Book/Conference proceedingChapterpeer-review

Abstract

In this paper we aim for the replication of a state of the art architecture for recognition of human actions using skeleton poses obtained from a depth sensor. We review the usefulness of accurate human action recognition in the field of robotic elderly care, focusing on fall detection. We attempt fall recognition using a chained Growing When Required neural gas classifier that is fed only skeleton joints data. We test this architecture against Recurrent SOMs (RSOMs) to classify the TST Fall detection database ver. 2, a specialised dataset for fall sequences. We also introduce a simplified mathematical model of falls for easier and faster bench-testing of classification algorithms for fall detection. The outcome of classifying falls from our mathematical model was successful with an accuracy of 97.12±1.65% and from the TST Fall detection database ver. 2 with an accuracy of 90.2±2.68% when a filter was added.
Original languageEnglish
Title of host publicationICONIP 2016
EditorsA.H. Hirose, O.S. Ozawa, K.D. Doya, K.I. Kazushi, M.L. Minho, D.L. Derong
PublisherSpringer Nature
Pages526-534
Number of pages9
ISBN (Print)3319466879, 9783319466873
DOIs
Publication statusPublished - 30 Sept 2016

Publication series

NameLNCS

Keywords

  • Computers
  • fall detection

Fingerprint

Dive into the research topics of 'Implementation of a Modular Growing When Required Neural Gas Architecture for Recognition of Falls: Neural Information Processing 23rd International Conference, ICONIP 2016, Kyoto, Japan, October 16–21, 2016, Proceedings'. Together they form a unique fingerprint.

Cite this