Abstract
Background: Neutron-rich, even-mass chromium and iron isotopes approaching neutron number N=40 have been important benchmarks in the development of shell-model effective interactions incorporating the effects of shell evolution in the exotic regime. Odd-mass manganese nuclei have received less attention, but provide important and complementary sensitivity to these interactions. Purpose: We report the observation of two new γ-ray transitions in Mn63, which establish the (9/2-) and (11/2-) levels on top of the previously known (7/2-) first-excited state. The lifetime for the (7/2-) and (9/2-) excited states were determined for the first time, while an upper limit could be established for the (11/2-) level. Method: Excited states in Mn63 have been populated in inelastic scattering from a Be9 target and in the fragmentation of Fe65. γγ coincidence relationships were used to establish the decay level scheme. A Doppler line-shape analysis for the Doppler-broadened (7/2-)→5/2-, (9/2-)→(7/2-), and (11/2-)→(9/2-) transitions was used to determine (limits for) the corresponding excited-state lifetimes. Results: The low-lying level scheme and the excited-state lifetimes were compared with large-scale shell-model calculations using different model spaces and effective interactions in order to isolate important aspects of shell evolution in this region of structural change. Conclusions: While the theoretical (7/2-) and (9/2-) excitation energies show little dependence on the model space, the calculated lifetime of the (7/2-) level and calculated energy of the (11/2-) level reveal the importance of including the neutron g9/2 and d5/2 orbitals in the model space. The LNPS effective shell-model interaction provides the best overall agreement with the new data.
Original language | English |
---|---|
Article number | 014313 |
Journal | Physical Review C |
Volume | 93 |
Issue number | 1 |
DOIs | |
Publication status | Published - 21 Jan 2016 |