Projects per year
Abstract
SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined.
Original language | English |
---|---|
Pages (from-to) | 13-23 |
Number of pages | 11 |
Journal | Journal of Nuclear Materials |
Volume | 481 |
DOIs | |
Publication status | Published - 1 Dec 2016 |
Fingerprint
Dive into the research topics of 'In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite'. Together they form a unique fingerprint.Projects
- 2 Finished
-
QUBE : Quasi-Brittle fracture: a 3-D experimentally-validated approach
Mummery, P. (PI), Jivkov, A. (CoI) & Yang, Z. (CoI)
1/10/12 → 30/09/15
Project: Research
-
Structural Evolution across multiple time and length scales
Withers, P. (PI), Cartmell, S. (CoI), Cernik, R. (CoI), Derby, B. (CoI), Eichhorn, S. (CoI), Freemont, A. (CoI), Hollis, C. (CoI), Mummery, P. (CoI), Sherratt, M. (CoI), Thompson, G. (CoI) & Watts, D. (CoI)
1/06/11 → 31/05/16
Project: Research