TY - JOUR
T1 - In situ XPS of Competitive CO2/H2O Absorption in an Ionic Liquid
AU - Cole, Jordan
AU - Henderson, Zoe
AU - Thomas, Andrew G
AU - Castle, Christopher
AU - Greer, Adam
AU - Hardacre, Christopher
AU - Scardamaglia, Mattia
AU - Shavorskiy, Andrey
AU - Syres, Karen Louise
PY - 2023/10/10
Y1 - 2023/10/10
N2 - Superbasic ionic liquids (SBILs) are being investigated as potential carbon dioxide (CO 2 ) gas capture agents, however, the presence of H 2 O in the flue stream can inhibit the uptake of CO 2 . In this study a thin film of the SBIL trihexyltetradecylphosphonium 1,2,4-triazolide ([P 66614 ][124Triz]) was deposited onto rutile TiO 2 (110) using in situ electrospray deposition and studied upon exposure to CO 2 and H 2 O using in situ near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS). The molar uptake ratio of gas in the electrosprayed SBIL ( n gas :n IL ) was calculated to be 0.3:1 for CO 2 , 0.7:1 for H 2 O, and 0.9:1 for a CO 2 /H 2 O mixture. NAP-XPS taken at two different depths reveals that the competitive absorption of CO 2 and H 2 O in [P 66614 ][124Triz] varies with sampling depth. A greater concentration of CO 2 absorbs in the bulk layers, while more H 2 O adsorbs/absorbs at the surface. The presence of H 2 O in the gas mixture does not inhibit the absorption of CO 2 . Measurements taken during exposure and after the removal of gas indicate that CO 2 absorbed in the bulk does so reversibly, whilst CO 2 adsorbed/absorbed at the surface does so irreversibly. This is contrary to the fully reversible CO 2 reaction shown for bulk ionic liquids (ILs) in literature and suggests that irreversible absorption of CO 2 in our highly-structured thin films is largely attributed to reactions at the surface. This has potential implications on IL gas capture and thin film IL catalysis applications.
AB - Superbasic ionic liquids (SBILs) are being investigated as potential carbon dioxide (CO 2 ) gas capture agents, however, the presence of H 2 O in the flue stream can inhibit the uptake of CO 2 . In this study a thin film of the SBIL trihexyltetradecylphosphonium 1,2,4-triazolide ([P 66614 ][124Triz]) was deposited onto rutile TiO 2 (110) using in situ electrospray deposition and studied upon exposure to CO 2 and H 2 O using in situ near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS). The molar uptake ratio of gas in the electrosprayed SBIL ( n gas :n IL ) was calculated to be 0.3:1 for CO 2 , 0.7:1 for H 2 O, and 0.9:1 for a CO 2 /H 2 O mixture. NAP-XPS taken at two different depths reveals that the competitive absorption of CO 2 and H 2 O in [P 66614 ][124Triz] varies with sampling depth. A greater concentration of CO 2 absorbs in the bulk layers, while more H 2 O adsorbs/absorbs at the surface. The presence of H 2 O in the gas mixture does not inhibit the absorption of CO 2 . Measurements taken during exposure and after the removal of gas indicate that CO 2 absorbed in the bulk does so reversibly, whilst CO 2 adsorbed/absorbed at the surface does so irreversibly. This is contrary to the fully reversible CO 2 reaction shown for bulk ionic liquids (ILs) in literature and suggests that irreversible absorption of CO 2 in our highly-structured thin films is largely attributed to reactions at the surface. This has potential implications on IL gas capture and thin film IL catalysis applications.
UR - https://www.mendeley.com/catalogue/7df9e9a5-e2e5-3aef-8e4f-61e07ed3d839/
U2 - 10.1088/2515-7639/acfdcf
DO - 10.1088/2515-7639/acfdcf
M3 - Article
SN - 2515-7639
VL - 6
JO - Journal of Physics: Materials
JF - Journal of Physics: Materials
IS - 4
M1 - 045012
ER -