Abstract
The formation of cerebral senile plaques composed of amyloid β peptide (Aβ) is a fundamental feature of Alzheimer's disease (AD). Glial cells and more specifically microglia become reactive in the presence of Aβ. In a triple transgenic model of AD (3 × Tg-AD), we found a significant increase in activated microglia at 12 (by 111%) and 18 (by 88%) months of age when compared with non-transgenic (non-Tg) controls. This microglial activation correlated with Aβ plaque formation, and the activation in microglia was closely associated with Aβ plaques and smaller Aβ deposits. We also found a significant increase in the area density of resting microglia in 3 × Tg-AD animals both at plaque-free stage (at 9 months by 105%) and after the development of A plaques (at 12 months by 54% and at 18 months by 131%). Our results show for the first time that the increase in the density of resting microglia precedes both plaque formation and activation of microglia by extracellular Aβ accumulation. We suggest that AD pathology triggers a complex microglial reaction: at the initial stages of the disease the number of resting microglia increases, as if in preparation for the ensuing activation in an attempt to fight the extracellular Aβ load that is characteristic of the terminal stages of the disease. © 2010 Macmillan Publishers Limited All rights reserved.
Original language | English |
---|---|
Article number | e1 |
Journal | Cell Death and Disease |
Volume | 1 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2010 |
Keywords
- β-amyloid
- Alzheimers disease
- hippocampus
- microglia
- plasticity