Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds

R. Hernández-Córdova, D. A. Mathew, R. Balint, H. J. Carrillo-Escalante, J. M. Cervantes-Uc, L. A. Hidalgo-Bastida, F. Hernández-Sánchez*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. The group has recently synthesized a novel polycaprolactone based polyurethane-urea copolymer that showed improved mechanical properties compared with its previously published counterparts. The aim of this study was to explore whether indirect three-dimensional (3D) printing could provide a means to fabricate this novel, biodegradable polymer into a scaffold suitable for cardiac tissue engineering. Indirect 3D printing was carried out through printing water dissolvable poly(vinyl alcohol) porogens in three different sizes based on a wood-stack model, into which a polyurethane-urea solution was pressure injected. The porogens were removed, leading to soft polyurethane-urea scaffolds with regular tubular pores. The scaffolds were characterized for their compressive and tensile mechanical behavior; and their degradation was monitored for 12 months under simulated physiological conditions. Their compatibility with cardiac myocytes and performance in novel cardiac engineering-related techniques, such as aggregate seeding and bi-directional perfusion, was also assessed. The scaffolds were found to have mechanical properties similar to cardiac tissue, and good biocompatibility with cardiac myocytes. Furthermore, the incorporated cells preserved their phenotype with no signs of de-differentiation. The constructs worked well in perfusion experiments, showing enhanced seeding efficiency.

Original languageEnglish
Pages (from-to)1912-1921
Number of pages10
JournalJournal of Biomedical Materials Research - Part A
Volume104
Issue number8
DOIs
Publication statusPublished - 1 Aug 2016

Keywords

  • cardiac tissue engineering
  • indirect 3D printing
  • polyurethane-urea
  • rapid prototyping
  • scaffold fabrication

Fingerprint

Dive into the research topics of 'Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds'. Together they form a unique fingerprint.

Cite this