Abstract
Hard X-ray Photoelectron Spectroscopy (HAXPES) provides minimally destructive depth profiling into the bulk, extending the photoelectron sampling depth. Detection of deeply buried layers beyond the elastic limit is enabled through inelastic background analysis. To test the robustness of this technique, we present results on a thin (18 nm) layer of metal–organic complex buried up to 200 nm beneath organic material. Overlayers with thicknesses 25–140 nm were measured using photon energies ranging 6–10 keV at the I09 end station at Diamond Light Source, and a new fixed energy Ga Kα (9.25 keV) laboratory-based HAXPES spectrometer was also used to measure samples with overlayers up to 200 nm thick. The sampling depth was varied: at Diamond Light Source by changing the photon energy, and in the lab system by performing angle-resolved measurements. For all the different overlayers and sampling depths, inelastic background modelling consistently provided thicknesses which agreed, within reasonable error, with the ellipsometric thickness. Relative sensitivity factors were calculated, and these factors consistently provided reasonable agreement with the expected nominal stoichiometry, suggesting the calculation method can be extended to any element. These results demonstrate the potential for the characterisation of deeply buried layers using synchrotron and laboratory-based HAXPES.
Original language | English |
---|---|
Article number | 148635 |
Number of pages | 11 |
Journal | Applied Surface Science |
Volume | 541 |
DOIs | |
Publication status | Published - 1 Mar 2021 |
Keywords
- Angle-resolved photoelectron spectroscopy
- Buried interface
- Depth profiling
- Hard X-ray photoelectron spectroscopy
- Inelastic background analysis
- Metal-organic complex
Research Beacons, Institutes and Platforms
- Photon Science Institute
- Henry Royce Institute
Fingerprint
Dive into the research topics of 'Inelastic background modelling applied to Hard X-ray Photoelectron Spectroscopy of deeply buried layers: a comparison of synchrotron and lab-based (9.25 keV) measurements'. Together they form a unique fingerprint.Equipment
-
Hard X-ray Photoelectron Spectroscopy (HAXPES)
Spencer, B. (Senior Technical Specialist) & Flavell, W. (Academic lead)
Faculty of Science and EngineeringFacility/equipment: Facility
-
Surface Characterisation
Spencer, B. (Platform Lead), Nikiel, M. (Technical Specialist), Sheraz, S. (Technical Specialist), Li, K. (Technical Specialist), Dwyer, L. (Technical Specialist), Wall, S. (Technical Specialist), Williams, W. (Technical Specialist), Forrest, A. (Senior Technician), Fong, J. (Senior Technician), Filip, T. (Technician) & Moore, K. (Academic lead)
FSE ResearchFacility/equipment: Platform