TY - JOUR
T1 - Influence of Polymer Topology on Gas Separation Membrane Performance of the Polymer of Intrinsic Microporosity PIM-Py
AU - Devarajan, Anirudh
AU - Asuquo, Edidiong D.
AU - Ahmad, Mohd Zamidi
AU - Foster, Andrew B.
AU - Budd, Peter M.
N1 - Funding Information:
P.M.B., A.B.F., and E.D.A. would like to thank the support of Programme Grant nos. EP/M01486X/1 (SynFabFun) and EP/M001342/1 (ORGMEMT) funded by the Engineering and Physical Sciences Research Council (EPSRC). They also would like to thank Emma Enston, Anne Davies, Martin Jennings, Sajjad Mohsenpour, and Ahmed Ameen for their assistance in obtaining the MALDI-TOF mass spectra, elemental analysis, and the final CO/CH mixed gas measurements for aged membranes, respectively. 2 4
Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/7/9
Y1 - 2021/7/9
N2 - The polymer synthesis of 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile-3,3,3′,3′-tetramethyl-1,1′-spirobisindane-5,5′,6,6′-tetrol copolymer, termed PIM-Py, was investigated under different solvent (dimethylformamide (DMF) and dimethylacetamide/dichlorobenzene) and temperature (65-160 °C) conditions to produce a range of topologically different polymer samples. Characterization of the polymers, particularly with proton NMR spectroscopy and multiple detector SEC analysis, indicated that, like PIM-1, the polymerizations proceeded with a degree of polymer chain branching. This is attributed to the occurrence of monosubstitution reactions, instead of disubstitution, which eventually leads to a significant proportion of colloidal network formation. However, all polymer samples remained soluble/dispersible in chloroform at the concentration required to cast self-standing films. This work reports the first examination of PIM-Py as a membrane for gas separation applications. The most structurally diverse PIM-Py samples produced films that exhibited selectivity/permeability balances in single gas permeation studies above the 2008 Robeson upper bound for the CO2/N2 gas pair. Indeed, a film cast from the highest colloidal network content sample surpassed the recently introduced 2019 CO2/N2 upper bound. After 143 days of aging, a 40 μm self-standing membrane still exhibited a single gas CO2 permeability of 4480 barrer and an ideal CO2/N2 selectivity of 45. The polymers produced in lower temperature reactions in DMF exhibited gas separation performances very similar to a structurally regular "normal"PIM-1 polymer, sitting on or around the 2008 Robeson upper bound line. Single gas permeation measurements to determine CO2/CH4 selectivity showed similar trends across the range of polymer samples, without generally reaching high selectivities as for the CO2/N2 pair. Mixed gas CO2/CH4 permeation measurements with aging were also completed for PIM-Py membranes, which indicated similar gas separation performance to a structurally regular PIM-1 polymer. This study would suggest that, like PIM-1, gas separation performance of PIM-Py is greatly influenced by the topological balance toward branched and network material within the polymer sample.
AB - The polymer synthesis of 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile-3,3,3′,3′-tetramethyl-1,1′-spirobisindane-5,5′,6,6′-tetrol copolymer, termed PIM-Py, was investigated under different solvent (dimethylformamide (DMF) and dimethylacetamide/dichlorobenzene) and temperature (65-160 °C) conditions to produce a range of topologically different polymer samples. Characterization of the polymers, particularly with proton NMR spectroscopy and multiple detector SEC analysis, indicated that, like PIM-1, the polymerizations proceeded with a degree of polymer chain branching. This is attributed to the occurrence of monosubstitution reactions, instead of disubstitution, which eventually leads to a significant proportion of colloidal network formation. However, all polymer samples remained soluble/dispersible in chloroform at the concentration required to cast self-standing films. This work reports the first examination of PIM-Py as a membrane for gas separation applications. The most structurally diverse PIM-Py samples produced films that exhibited selectivity/permeability balances in single gas permeation studies above the 2008 Robeson upper bound for the CO2/N2 gas pair. Indeed, a film cast from the highest colloidal network content sample surpassed the recently introduced 2019 CO2/N2 upper bound. After 143 days of aging, a 40 μm self-standing membrane still exhibited a single gas CO2 permeability of 4480 barrer and an ideal CO2/N2 selectivity of 45. The polymers produced in lower temperature reactions in DMF exhibited gas separation performances very similar to a structurally regular "normal"PIM-1 polymer, sitting on or around the 2008 Robeson upper bound line. Single gas permeation measurements to determine CO2/CH4 selectivity showed similar trends across the range of polymer samples, without generally reaching high selectivities as for the CO2/N2 pair. Mixed gas CO2/CH4 permeation measurements with aging were also completed for PIM-Py membranes, which indicated similar gas separation performance to a structurally regular PIM-1 polymer. This study would suggest that, like PIM-1, gas separation performance of PIM-Py is greatly influenced by the topological balance toward branched and network material within the polymer sample.
KW - CO /N selectivity
KW - PIM-Py
KW - gas separation
KW - membranes
KW - polymer topology
KW - polymers of intrinsic microporosity
KW - self-standing films
U2 - 10.1021/acsapm.1c00415
DO - 10.1021/acsapm.1c00415
M3 - Article
SN - 2637-6105
VL - 3
SP - 3485
EP - 3495
JO - ACS Applied Polymer Materials
JF - ACS Applied Polymer Materials
IS - 7
ER -