Initiation and evolution of an epicontinental shelf-slope margin in an actively contracting deep-water basin: The Eocene Aínsa Basin, southern Pyrenees (Spain)

Ashley J.M. Ayckbourne*, Rhodri M. Jerrett, Matthew P. Watkinson, Miquel Poyatos-Moré, Ian A. Kane, Stephen Covey-Crump, Kevin G. Taylor

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The shelf-slope margin is a geomorphic zone with a change in gradient between subaqueous shelves and slopes, which extends towards the submarine basin-floor. It is important because it partitions distinct sedimentary and biogenic processes between the shallow and deep-water realms. The initiation of a shelf-slope profile from pre-existing conditions, and the evolution of shelf margins in space and time has been the focus of numerous studies, particularly from seismic data sets on passive margins, although markedly less-so from active tectonic settings. This study documents the initiation and evolution of a shelf-slope margin in the well-studied Eocene Aínsa Basin (Spanish Pyrenees) through the segmentation of a mixed carbonate-siliciclastic ramp via contractional tectonics and differential subsidence. The basinward propagation of a series of thrusts through the ramp allowed the maintenance of shallow-water, predominantly carbonate sedimentation on their uplifted hanging wall anticlines. Conversely, the deepened foot wall synclines became muddy slope environments, and their axes became the main loci of siliciclastic turbidity current bypass and deposition. The deflection of turbidity currents around uplifted areas towards the synclinal lows allowed for the continuation of carbonate production at the bathymetric highs, which kept pace with subsidence. The interface between shallow- and deep-water sedimentation (i.e. the shelf-slope margin) was an erosional and composite submarine scarp surface generated by several phases of large-scale mass wasting of the aggrading shelf carbonates, and healing by onlap of slope turbidites against the scarp. Continued thrust propagation and basin deepening led to the progressive headward degradation of the surfaces, resulting in an apparent retrogradation of the shelf-slope margin and onlapping slope deposits. This model for the tectonically controlled conversion of a submarine ramp into a shelf-slope profile contrasts with conventional models that consider shelf-slope margins to be inherently progradational after initiation. This study also challenges the notion that large-scale degradational surfaces and thick successions of submarine landslides are inherently diagnostic of canyons and their fill.

Original languageEnglish
Article numbere12884
JournalBasin Research
Volume36
Issue number4
DOIs
Publication statusPublished - 1 Jul 2024

Keywords

  • Atiart Surface
  • Aínsa Basin
  • foreland basin
  • Fosado
  • Hecho Group
  • shelf-slope margin
  • submarine landslide
  • submarine ramp
  • submarine slope
  • turbidite
  • turbidity current

Fingerprint

Dive into the research topics of 'Initiation and evolution of an epicontinental shelf-slope margin in an actively contracting deep-water basin: The Eocene Aínsa Basin, southern Pyrenees (Spain)'. Together they form a unique fingerprint.

Cite this