Projects per year
Abstract
Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H+, H2+, and H3+ ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values as high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.
Original language | English |
---|---|
Article number | 183104 |
Number of pages | 5 |
Journal | Applied Physics Letters |
Volume | 105 |
Issue number | 18 |
DOIs | |
Publication status | Published - 4 Nov 2014 |
Research Beacons, Institutes and Platforms
- National Graphene Institute
Fingerprint
Dive into the research topics of 'Insight into hydrogenation of graphene: effect of hydrogen plasma chemistry'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Graphene-based membranes
Budd, P. (PI), Carbone, P. (CoI), Casiraghi, C. (CoI), Grieve, B. (CoI), Haigh, S. (CoI), Holmes, S. (CoI), Jivkov, A. (CoI), Kinloch, I. (CoI), Raveendran Nair, R. (CoI), Schroeder, S. (CoI), Siperstein, F. (CoI) & Vijayaraghavan, A. (CoI)
1/07/13 → 30/06/18
Project: Research