Integrated structure- and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6.

Virginie Y Martiny, Pablo Carbonell, Florent Chevillard, Gautier Moroy, Arnaud B Nicot, Philippe Vayer, Bruno O Villoutreix, Maria A Miteva

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Cytochrome P450 (CYP) is a superfamily of enzymes responsible for the metabolism of drugs, xenobiotics and endogenous compounds. CYP2D6 metabolizes about 30\% of drugs and predicting potential CYP2D6 inhibition is important in early-stage drug discovery. We developed an original in silico approach for the prediction of CYP2D6 inhibition combining the knowledge of the protein structure and its dynamic behavior in response to the binding of various ligands and machine learning modeling. This approach includes structural information for CYP2D6 based on the available crystal structures and molecular dynamic simulations (MD) that we performed to take into account conformational changes of the binding site. We performed modeling using three learning algorithms -support vector machine, RandomForest and NaiveBayesian -and we constructed combined models based on topological information of known CYP2D6 inhibitors and predicted binding energies computed by docking on both X-ray and MD protein conformations. In addition, we identified three MD-derived structures that are capable all together to better discriminate inhibitors and non-inhibitors compared with individual CYP2D6 conformations, thus ensuring complementary ligand profiles. Inhibition models based on classical molecular descriptors and predicted binding energies were able to predict CYP2D6 inhibition with an accuracy of 78\% on the training set and 75\% on the external validation set. [email protected] information: Supplementary data are available at Bioinformatics online. {\copyright} The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].
    Original languageEnglish
    JournalBioinformatics (Oxford, England)
    Publication statusPublished - 26 Aug 2015

    Keywords

    • cytochrome\_p450
    • docking
    • drug\_toxicity
    • enzyme
    • metabolism
    • p450
    • qsar
    • tweet

    Research Beacons, Institutes and Platforms

    • Manchester Institute of Biotechnology

    Fingerprint

    Dive into the research topics of 'Integrated structure- and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6.'. Together they form a unique fingerprint.

    Cite this