Abstract
Existing biomedical coreference resolution systems depend on features and/or
rules based on syntactic parsers. In this paper, we investigate the utility of the stateof-
the-art general domain neural coreference resolution system on biomedical texts. The system is an end-to-end system without depending on any syntactic parsers. We also investigate the domain specific features to enhance the system for biomedical texts. Experimental results on the BioNLP Protein Coreference dataset and the CRAFT corpus show that, with no parser information, the adapted system compared favorably with the systems that depend on parser information on these datasets, achieving 51.23% on the BioNLP dataset and 36.33% on the CRAFT corpus in F1 score. In-domain embeddings and domain-specific features helped improve the performance on the BioNLP dataset, but they did not on the CRAFT corpus.
rules based on syntactic parsers. In this paper, we investigate the utility of the stateof-
the-art general domain neural coreference resolution system on biomedical texts. The system is an end-to-end system without depending on any syntactic parsers. We also investigate the domain specific features to enhance the system for biomedical texts. Experimental results on the BioNLP Protein Coreference dataset and the CRAFT corpus show that, with no parser information, the adapted system compared favorably with the systems that depend on parser information on these datasets, achieving 51.23% on the BioNLP dataset and 36.33% on the CRAFT corpus in F1 score. In-domain embeddings and domain-specific features helped improve the performance on the BioNLP dataset, but they did not on the CRAFT corpus.
Original language | English |
---|---|
Title of host publication | Proceedings of the BioNLP 2018 workshop |
Pages | 183-188 |
Number of pages | 6 |
Publication status | Published - 19 Jul 2018 |