Abstract
The mechanisms governing efficiency droop in an In0.18Ga0.82N/GaN multiple quantum well structure were investigated using a combination of ultrafast time-resolved terahertz and photoluminescence spectroscopy. From excitation fluence dependent studies, a reduction in the room temperature photoluminescence efficiency to 3% of its maximum value was observed for an excitation fluence of 0.96 mJcm-2. A correlation was found between the onset of efficiency droop and the emergence of a peak on the high-energy side of the quantum well emission with a 1/e decay time of 19.6 ps. These characteristics were attributed to the saturation of localised states and the population of higher energy delocalised states. Time-resolved studies revealed different scaling behaviours between the terahertz and photoluminescence decay dynamics, suggesting that the saturation of localised hole states may be playing a part in the onset of efficiency droop
Original language | English |
---|---|
Pages (from-to) | 252-255 |
Journal | Physica Status Solidi. C: Current Topics in Solid State Physics |
Early online date | 3 Feb 2016 |
DOIs | |
Publication status | Published - May 2016 |