Iodide autoregulation of functional and morphological differentiation events in the FRTL-5 rat thyroid cell strain

H. M. Beere, S. Tomlinson, S. P. Bidey

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The role of cyclic AMP (cAMP) attenuation in mediating the autoregulatory actions of iodide on thyroid cell iodide uptake and surface morphological responses to TSH was investigated in the rat thyroid cell strain FRTL-5. Preincubation of cells for 6 h with up to 1 mmol sodium iodide/l led to a progressive reduction in both accumulation of cAMP and iodide uptake responses to TSH. Forskolin-mediated accumulation of cAMP and iodide uptake responses were similarly reduced after preincubation with iodide, whilst the iodide accumulation response to dibutyryl cAMP (dbcAMP) was unaffected. The inhibitory effects of iodide on TSH or forskolin-responsive iodide accumulation were not seen if preincubation was limited to 3 h, and were also abolished by the thionamide drug methimazole (1 mmol/l). Medium containing 1 μmol iodide/l prevented the appearance of the surface microvilli and pseudopodia normally observed after re-addition of TSH or forskolin, although cytoplasmic retraction was still apparent under such conditions. In contrast, iodide was without effect on the ability of dbcAMP (1 mmol/l) to induce cytoplasmic retraction and the formation of microvilli and pseudopodia. Inclusion of 1 mmol sodium perchlorate/l together with iodide during preincubation failed to prevent or reduce the suppression by iodide of either iodide uptake or surface morphological differentiation, suggesting that both aspects of autoregulation may involve surface actions of organified iodide. These observations indicate that in FRTL-5 cells, autoregulation by iodide of both the functional and surface morphological actions of TSH principally reflects the attenuating activities of organified iodide on intracellular cAMP generation.
    Original languageEnglish
    Pages (from-to)19-25
    Number of pages6
    JournalJournal of Endocrinology
    Volume124
    Issue number1
    Publication statusPublished - 1990

    Fingerprint

    Dive into the research topics of 'Iodide autoregulation of functional and morphological differentiation events in the FRTL-5 rat thyroid cell strain'. Together they form a unique fingerprint.

    Cite this