TY - JOUR
T1 - Isolation of Escherichia coli inner membranes by metal affinity two-phase partitioning
AU - Barinaga-Rementeria, Irene
AU - Everberg, Henrik
AU - Clough, Joanne
AU - Henderson, Peter
AU - Jergil, Bengt
AU - Tjerneld, Folke
AU - Ramírez, Irene Barinaga Rementeria
PY - 2006/6/23
Y1 - 2006/6/23
N2 - As reduction of sample complexity is a central issue in membrane proteomic research, the need for new pre-fractionation methods is significant. Here we present a method for fast and efficient enrichment of Escherichia coli inner membranes expressing a His-tagged integral membrane l-fucose-proton symporter (FucP). An enriched inner membrane fraction was obtained from a crude membrane mixture using affinity two-phase partitioning in combination with nickel-nitrilotriacetic acid (Ni-NTA) immobilized on agarose beads. Due to interaction between the beads and FucP, inner membranes were selectively partitioned to the bottom phase of a polymer/polymer aqueous two-phase system consisting of poly(ethylene glycol) (PEG) and dextran. The partitioning of membranes was monitored by assaying the activity of an inner membrane marker protein and measuring the total protein content in both phases. The enrichment of inner membrane proteins in the dextran phase was also investigated by proteomic methodology, including sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), trypsin digestion and liquid chromatography in combination with tandem mass spectrometry (LC-MS/MS). Using a high level of significance (99.95%) in the subsequent database search, 36 proteins assigned to the inner membrane were identified in the bottom phase, compared to 29 when using the standard sucrose gradient centrifugation method for inner membrane isolation. Furthermore, metal affinity two-phase partitioning was up to 10 times faster than sucrose gradient centrifugation. The separation conditions in these model experiments provide a basis for the selective isolation of E. coli membranes expressing His-tagged proteins and can therefore facilitate research on such membrane proteomes. © 2006 Elsevier B.V. All rights reserved.
AB - As reduction of sample complexity is a central issue in membrane proteomic research, the need for new pre-fractionation methods is significant. Here we present a method for fast and efficient enrichment of Escherichia coli inner membranes expressing a His-tagged integral membrane l-fucose-proton symporter (FucP). An enriched inner membrane fraction was obtained from a crude membrane mixture using affinity two-phase partitioning in combination with nickel-nitrilotriacetic acid (Ni-NTA) immobilized on agarose beads. Due to interaction between the beads and FucP, inner membranes were selectively partitioned to the bottom phase of a polymer/polymer aqueous two-phase system consisting of poly(ethylene glycol) (PEG) and dextran. The partitioning of membranes was monitored by assaying the activity of an inner membrane marker protein and measuring the total protein content in both phases. The enrichment of inner membrane proteins in the dextran phase was also investigated by proteomic methodology, including sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), trypsin digestion and liquid chromatography in combination with tandem mass spectrometry (LC-MS/MS). Using a high level of significance (99.95%) in the subsequent database search, 36 proteins assigned to the inner membrane were identified in the bottom phase, compared to 29 when using the standard sucrose gradient centrifugation method for inner membrane isolation. Furthermore, metal affinity two-phase partitioning was up to 10 times faster than sucrose gradient centrifugation. The separation conditions in these model experiments provide a basis for the selective isolation of E. coli membranes expressing His-tagged proteins and can therefore facilitate research on such membrane proteomes. © 2006 Elsevier B.V. All rights reserved.
KW - Affinity partitioning
KW - Aqueous two-phase systems
KW - Escherichia coli membranes
KW - Fractionation
KW - Membrane proteins
KW - Transport
U2 - 10.1016/j.chroma.2006.03.123
DO - 10.1016/j.chroma.2006.03.123
M3 - Article
SN - 1873-3778
VL - 1118
SP - 244
EP - 252
JO - Journal of Chromatography A
JF - Journal of Chromatography A
IS - 2
ER -