Lamb waves-based technologies for structural health monitoring of composite structures for aircraft applications

Marilyne Philibert, Kui Yao, Matthieu Gresil, Constantinos Soutis

Research output: Contribution to journalArticlepeer-review

Abstract

The most common researched area of damage in a composite material such as carbon fibre reinforced plastics (CFRP) used currently in aircraft construction is barely visible impact damage (BVID), significantly reducing mechanical properties. Early detection and qualification would improve safety and reduce the cost of repair. In this context, structural health monitoring (SHM) techniques have been developed that could monitor a structure at any time by using a network of sensors. Widely used discrete ceramic transducers can generate and sense Lamb waves travelling in the structure. Wave propagation must then be analysed for effective damage identification. An effective SHM system is desired to meet several demands, such as minimised weight penalty, non-intrusive system not interfering with the structure performance, cost-effectiveness for implementation with targeted sensitivity and area coverage, capability of monitoring non-accessible and critical hot spot regions, robustness, and reliability. This review starts with an introduction on Lamb waves fundamentals and their use in SHM, and then particularly focuses on methods using piezoelectric transducers and mode selection. Some relevant applications on different structural configurations are discussed. Finally, recent developments on piezoelectric coating and direct-write sensor technology for tailored transducers are highlighted with some thoughts for near future research work.

Original languageEnglish
Pages (from-to)436-474
Number of pages39
JournalEuropean Journal of Materials
Volume2
Issue number1
Early online date27 Jun 2022
DOIs
Publication statusPublished - 31 Dec 2022

Fingerprint

Dive into the research topics of 'Lamb waves-based technologies for structural health monitoring of composite structures for aircraft applications'. Together they form a unique fingerprint.

Cite this