Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

Nils M. Freitag, Tobias Reisch, Larisa A. Chizhova, Péter Nemes-Incze, Christian Holl, Colin R. Woods, Roman V. Gorbachev, Yang Cao, Andre K. Geim, Kostya S. Novoselov, Joachim Burgdörfer, Florian Libisch, Markus Morgenstern

    Research output: Contribution to journalArticlepeer-review

    463 Downloads (Pure)


    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

    Original languageEnglish
    Pages (from-to)392-397
    Number of pages6
    JournalNature Nanotechnology
    Issue number5
    Early online date19 Mar 2018
    Publication statusPublished - 2018

    Research Beacons, Institutes and Platforms

    • National Graphene Institute


    Dive into the research topics of 'Large tunable valley splitting in edge-free graphene quantum dots on boron nitride'. Together they form a unique fingerprint.

    Cite this