Laser-Assisted Ultrafast Fabrication of Crystalline Ta-Doped TiO2 for High-Humidity-Processed Perovskite Solar Cells

Hongbo Mo, Dong Wang, Qian Chen*, Wei Guo, Suresh Maniyarasu, Andrew G. Thomas, Richard J. Curry, Lin Li, Zhu Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A titanium dioxide (TiO2) compact film is a widely used electron transport layer (ETL) for n-i-p planar perovskite solar cells (PSCs). However, TiO2sufferers from poor electrical conductivity, leading to high energy loss at the perovskite/ETL/transparent conductive oxide interface. Doping the TiO2film with alkali- and transition-metal elements is an effective way to improve its electrical conductivity. The conventional method to prepare these metal-doped TiO2films commonly requires time-consuming furnace treatments at 450-600 °C for 30 min to 3 h. Herein, a rapid one-step laser treatment is developed to enable doping of tantalum (Ta) in TiO2(Ta-TiO2) and to simultaneously induce the crystallization of TiO2films from its amorphous precursor to an anatase phase. The PSCs based on the Ta-TiO2films treated with the optimized fiber laser (1070 nm) processing parameters (21 s with a peak processing temperature of 800-850 °C) show enhanced photovoltaic performance in comparison to that of the device fabricated using furnace-treated films at 500 °C for 30 min. The ambient-processed planar PSCs fabricated under high relative humidity (RH) of 50-70% display power conversion efficiencies (PCEs) of 18.34% and 16.04% for devices based on Cs0.1FA0.9PbI3and CH3NH3PbI3absorbers, respectively. These results are due to the improved physical and chemical properties of the Ta-TiO2films treated by the optimal laser process in comparison to those for the furnace process. The laser process is rapid, simple, and potentially scalable to produce metal-doped TiO2films for efficient PSCs.

Original languageEnglish
Pages (from-to)15141-15153
Number of pages13
JournalACS Applied Materials and Interfaces
Volume14
Issue number13
DOIs
Publication statusPublished - 6 Apr 2022

Keywords

  • Ta-doped TiO2
  • ambient-processed
  • laser-assisted doping
  • perovskite solar cells

Research Beacons, Institutes and Platforms

  • Photon Science Institute

Fingerprint

Dive into the research topics of 'Laser-Assisted Ultrafast Fabrication of Crystalline Ta-Doped TiO2 for High-Humidity-Processed Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this