Abstract
A titanium dioxide (TiO2) compact film is a widely used electron transport layer (ETL) for n-i-p planar perovskite solar cells (PSCs). However, TiO2sufferers from poor electrical conductivity, leading to high energy loss at the perovskite/ETL/transparent conductive oxide interface. Doping the TiO2film with alkali- and transition-metal elements is an effective way to improve its electrical conductivity. The conventional method to prepare these metal-doped TiO2films commonly requires time-consuming furnace treatments at 450-600 °C for 30 min to 3 h. Herein, a rapid one-step laser treatment is developed to enable doping of tantalum (Ta) in TiO2(Ta-TiO2) and to simultaneously induce the crystallization of TiO2films from its amorphous precursor to an anatase phase. The PSCs based on the Ta-TiO2films treated with the optimized fiber laser (1070 nm) processing parameters (21 s with a peak processing temperature of 800-850 °C) show enhanced photovoltaic performance in comparison to that of the device fabricated using furnace-treated films at 500 °C for 30 min. The ambient-processed planar PSCs fabricated under high relative humidity (RH) of 50-70% display power conversion efficiencies (PCEs) of 18.34% and 16.04% for devices based on Cs0.1FA0.9PbI3and CH3NH3PbI3absorbers, respectively. These results are due to the improved physical and chemical properties of the Ta-TiO2films treated by the optimal laser process in comparison to those for the furnace process. The laser process is rapid, simple, and potentially scalable to produce metal-doped TiO2films for efficient PSCs.
Original language | English |
---|---|
Pages (from-to) | 15141-15153 |
Number of pages | 13 |
Journal | ACS Applied Materials and Interfaces |
Volume | 14 |
Issue number | 13 |
DOIs | |
Publication status | Published - 6 Apr 2022 |
Keywords
- ambient-processed
- laser-assisted doping
- perovskite solar cells
- Ta-doped TiO
Research Beacons, Institutes and Platforms
- Photon Science Institute