Abstract
We show that density models describing multiple observables with (i) hard boundaries and (ii) dependence on external parameters may be created using an auto-regressive Gaussian mixture model. The model is designed to capture how observable spectra are deformed by hypothesis variations, and is made more expressive by projecting data onto a configurable latent space. It may be used as a statistical model for scientific discovery in interpreting experimental observations, for example when constraining the parameters of a physical model or tuning simulation parameters according to calibration data. The model may also be sampled for use within a Monte Carlo simulation chain, or used to estimate likelihood ratios for event classification. The method is demonstrated on simulated high-energy particle physics data considering the anomalous electroweak production of a $Z$ boson in association with a dijet system at the Large Hadron Collider, and the accuracy of inference is tested using a realistic toy example. The developed methods are domain agnostic; they may be used within any field to perform simulation or inference where a dataset consisting of many real-valued observables has conditional dependence on external parameters.
Original language | English |
---|---|
Journal | Machine Learning: Science and Technology |
Early online date | 11 Jan 2022 |
DOIs | |
Publication status | Published - 11 Jan 2022 |
Fingerprint
Dive into the research topics of 'Learning to discover: expressive Gaussian mixture models for multi-dimensional simulation and parameter inference in the physical sciences'. Together they form a unique fingerprint.Datasets
-
Expressive Gaussian mixture models for high-dimensional statistical modelling: simulated data and neural network model files
Price, D. (Creator) & Menary, S. (Creator), University of Manchester Figshare, 10 Dec 2021
DOI: 10.48420/17136839.v1, https://figshare.manchester.ac.uk/articles/dataset/Expressive_Gaussian_mixture_models_for_high-dimensional_statistical_modelling_simulated_data_and_neural_network_model_files/17136839/1
Dataset