TY - JOUR
T1 - Learning to generate and evaluate fact-checking explanations with transformers
AU - Feher, Darius
AU - Khered, Abdullah
AU - Zhang, Hao
AU - Batista-Navarro, Riza
AU - Schlegel, Viktor
PY - 2025/1/1
Y1 - 2025/1/1
N2 - In an era increasingly dominated by digital platforms, the spread of misinformation poses a significant challenge, highlighting the need for solutions capable of assessing information veracity. Our research contributes to the field of Explainable Artificial Antelligence (XAI) by developing transformer-based fact-checking models that contextualise and justify their decisions by generating human-accessible explanations. Importantly, we also develop models for automatic evaluation of explanations for fact-checking verdicts across different dimensions such as (self)-contradiction, hallucination, convincingness and overall quality. By introducing human-centred evaluation methods and developing specialised datasets, we emphasise the need for aligning Artificial Intelligence (AI)-generated explanations with human judgements. This approach not only advances theoretical knowledge in XAI but also holds practical implications by enhancing the transparency, reliability and users’ trust in AI-driven fact-checking systems. Furthermore, the development of our metric learning models is a first step towards potentially increasing efficiency and reducing reliance on extensive manual assessment. Based on experimental results, our best performing generative model achieved a Recall-Oriented Understudy for Gisting Evaluation-1 (ROUGE-1) score of 47.77 demonstrating superior performance in generating fact-checking explanations, particularly when provided with high-quality evidence. Additionally, the best performing metric learning model showed a moderately strong correlation with human judgements on objective dimensions such as (self)-contradiction and hallucination, achieving a Matthews Correlation Coefficient (MCC) of around 0.7.
AB - In an era increasingly dominated by digital platforms, the spread of misinformation poses a significant challenge, highlighting the need for solutions capable of assessing information veracity. Our research contributes to the field of Explainable Artificial Antelligence (XAI) by developing transformer-based fact-checking models that contextualise and justify their decisions by generating human-accessible explanations. Importantly, we also develop models for automatic evaluation of explanations for fact-checking verdicts across different dimensions such as (self)-contradiction, hallucination, convincingness and overall quality. By introducing human-centred evaluation methods and developing specialised datasets, we emphasise the need for aligning Artificial Intelligence (AI)-generated explanations with human judgements. This approach not only advances theoretical knowledge in XAI but also holds practical implications by enhancing the transparency, reliability and users’ trust in AI-driven fact-checking systems. Furthermore, the development of our metric learning models is a first step towards potentially increasing efficiency and reducing reliance on extensive manual assessment. Based on experimental results, our best performing generative model achieved a Recall-Oriented Understudy for Gisting Evaluation-1 (ROUGE-1) score of 47.77 demonstrating superior performance in generating fact-checking explanations, particularly when provided with high-quality evidence. Additionally, the best performing metric learning model showed a moderately strong correlation with human judgements on objective dimensions such as (self)-contradiction and hallucination, achieving a Matthews Correlation Coefficient (MCC) of around 0.7.
U2 - 10.1016/j.engappai.2024.109492
DO - 10.1016/j.engappai.2024.109492
M3 - Article
SN - 0952-1976
VL - 139
JO - Engineering Applications of Artificial Intelligence
JF - Engineering Applications of Artificial Intelligence
M1 - 109492
ER -