Abstract
Let ??, ?????, ?????,... be a sequence of independent and identically distributed random variables, and let \$S\_\{n\}={\textbackslash}xi \_\{1\}+{\textbackslash}cdots +{\textbackslash}xi \_\{n\}\$ and \$M\_\{n\}={\textbackslash}text\{max\}\_\{k{\textbackslash}leq n\}S\_\{k\}\$. Let \${\textbackslash}tau ={\textbackslash}text\{min\}{\textbackslash}\{n{\textbackslash}geq 1{\textbackslash}colon S\_\{n\}{\textbackslash}leq 0{\textbackslash}\}\$. We assume that ?? has a heavy-tailed distribution and negative, finite mean E(??) \< 0. We find the asymptotics of \${\textbackslash}text\{P\}{\textbackslash}\{M\_\{{\textbackslash}tau\}{\textbackslash}in (x,x+T]{\textbackslash}\}\$ as x ??? ???, for a fixed, positive constant T.
Original language | English |
---|---|
Pages (from-to) | 221-244 |
Number of pages | 24 |
Journal | Advances in Applied Probability |
Volume | 39 |
Issue number | 1 |
Publication status | Published - 2007 |