Local Asymptotics of the Cycle Maximum of a Heavy-Tailed Random Walk

Denis Denisov, V. Shneer

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Let ??, ?????, ?????,... be a sequence of independent and identically distributed random variables, and let \$S\_\{n\}={\textbackslash}xi \_\{1\}+{\textbackslash}cdots +{\textbackslash}xi \_\{n\}\$ and \$M\_\{n\}={\textbackslash}text\{max\}\_\{k{\textbackslash}leq n\}S\_\{k\}\$. Let \${\textbackslash}tau ={\textbackslash}text\{min\}{\textbackslash}\{n{\textbackslash}geq 1{\textbackslash}colon S\_\{n\}{\textbackslash}leq 0{\textbackslash}\}\$. We assume that ?? has a heavy-tailed distribution and negative, finite mean E(??) \< 0. We find the asymptotics of \${\textbackslash}text\{P\}{\textbackslash}\{M\_\{{\textbackslash}tau\}{\textbackslash}in (x,x+T]{\textbackslash}\}\$ as x ??? ???, for a fixed, positive constant T.
    Original languageEnglish
    Pages (from-to)221-244
    Number of pages24
    JournalAdvances in Applied Probability
    Volume39
    Issue number1
    Publication statusPublished - 2007

    Fingerprint

    Dive into the research topics of 'Local Asymptotics of the Cycle Maximum of a Heavy-Tailed Random Walk'. Together they form a unique fingerprint.

    Cite this