Abstract
Streaks are a common feature of disturbed boundary-layer flows. They play a central role in transient growth mechanisms and are a building block of self-sustained structures. Most theoretical work has focused on streaks that are periodic in the spanwise direction, but in this work we consider a single spatially localised streak embedded into a Blasius boundary layer. For small streak amplitudes, we show the perturbation can be described in terms of a set of eigenmodes that correspond to an isolated streak/roll structure. These modes are new, and arise from a bi-global eigenvalue calculation; they decay algebraically downstream and may be viewed as the natural three-dimensional extension of the classical two-dimensional Libby & Fox (J. Fluid Mech., vol. 17 (3), 1963, pp. 433–449) solutions. Despite their bi-global nature, we show that a subset of these eigenmodes (including the slowest decaying) is fundamentally related to the solutions first presented by Luchini (J. Fluid Mech., vol. 327, 1996, pp. 101–116), as derived for spanwise-periodic disturbances (at small spanwise wavenumber). This surprising connection is made by an analysis of the far-field decay of the bi-global state. We also address the fully non-parallel downstream development of nonlinear streaks, confirming that the aforementioned eigenmodes are recovered as the streak/roll decays downstream. Encouraging comparisons are made with available experimental data.
Original language | English |
---|---|
Pages (from-to) | 885-901 |
Number of pages | 17 |
Journal | Journal of Fluid Mechanics |
Volume | 849 |
Issue number | 0 |
Early online date | 26 Jun 2018 |
DOIs | |
Publication status | Published - 25 Aug 2018 |
Keywords
- boundary layers
- instability