Abstract
Original language | English |
---|---|
Pages (from-to) | 173-180 |
Number of pages | 8 |
Journal | Journal of Cereal Science |
Volume | 59 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- Bioavailability
- Biofortification
- IP6
- Phytate
Fingerprint
Dive into the research topics of 'Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry. / Kyriacou, B; Moore, K L; Paterson, D et al.
In: Journal of Cereal Science, Vol. 59, No. 2, 2014, p. 173-180.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry
AU - Kyriacou, B
AU - Moore, K L
AU - Paterson, D
AU - De Jonge, M D
AU - Howard, D L
AU - Stangoulis, J
AU - Tester, M
AU - Lombi, E
AU - Johnson, A A T
N1 - Cited By :2 Export Date: 26 January 2015 CODEN: JCSCD Correspondence Address: Johnson, A.A.T.; School of Botany, University of Melbourne, Victoria 3010, Australia; email: johnsa@unimelb.edu.au Funding Details: LP0883746, ARC, Australian Research Council Funding Details: EPSRC, Engineering and Physical Sciences Research Council References: Balmer, Y., Vensel, W.H., Cai, N., Manieri, W., Schürmann, P., Hurkman, W.J., Buchanan, B.B., Acomplete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts (2006) Proc. Natl. Acad. Sci. United States Am., 103, pp. 2988-2993; Bouis, H.E., Hotz, C., McClafferty, B., Meenakshi, J.V., Pfeiffer, W.H., Biofortification: a new tool to reduce micronutrient malnutrition (2011) Food Nutr. Bull., 32, pp. 31S-40S; Choi, E.Y., Graham, R., Stangoulis, J., Semi-quantitative analysis for selecting Fe- and Zn-dense genotypes of staple food crops (2007) J.Food Comp. Anal., 20, pp. 496-505; Clode, P.L., Kilburn, M.R., Jones, D.L., Stockdale, E.A., Cliff, J.B., Herrmann, A.M., Murphy, D.V., Situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry (2009) Plant Physiol., 151, pp. 1751-1757; Deinlein, U., Weber, M., Schmidt, H., Rensch, S., Trampczynska, A., Hansen, T.H., Husted, S., Clemens, S., Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation (2012) Plant Cell., 24, pp. 708-723; Hansen, T.H., Lombi, E., Fitzgerald, M., Laursen, K.H., Frydenvang, J., Husted, S., Boualaphanh, C., Schjoerring, J.K., Losses of essential mineral nutrients by polishing of rice differ among genotypes due to contrasting grain hardness and mineral distribution (2012) J.Cereal Sci., 56, pp. 307-315; Haydon, M.J., Kawachi, M., Wirtz, M., Hillmer, S., Hell, R., Krämer, U., Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis (2012) Plant Cell., 24, pp. 724-737; Iwai, T., Takahashi, M., Oda, K., Terada, Y., Yoshida, K.T., Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development (2012) Plant Physiol., 160, pp. 2007-2014; Johnson, A.A.T., Kyriacou, B., Callahan, D.L., Carruthers, L., Stangoulis, J., Lombi, E., Tester, M., Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm (2011) PLoS ONE, 6, pp. e24476; Khush, G., What it will take to feed 5.0 billion rice consumers in 2030 (2005) Plant Mol. Biol., 59, pp. 1-6; Lee, S., Jeon, U.S., Lee, S.J., Kim, Y.-K., Persson, D.P., Husted, S., Schjorring, J.K., An, G., Iron fortification of rice seeds through activation of the nicotianamine synthase gene (2009) P.Natl. Acad. Sci. USA, 106, pp. 22014-22019; Lee, S., Persson, D.P., Hansen, T.H., Husted, S., Schjoerring, J.K., Kim, Y.-S., Jeon, U.S., An, G., Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase (2011) Plant Biotech. J., 9, pp. 1-9; Lombi, E., Scheckel, K.G., Pallon, J., Carey, A.M., Zhu, Y.G., Meharg, A.A., Speciation and distribution of arsenic and localization of nutrients in rice grains (2009) New. Phytol., 184, pp. 193-201; Lombi, E., Smith, E., Hansen, T.H., Paterson, D., de Jonge, M.D., Howard, D.L., Persson, D.P., Schjoerring, J.K., Megapixel imaging of (micro)nutrients in mature barley grains (2011) J.Exp. Bot., 62, pp. 273-282; Meharg, A.A., Lombi, E., Williams, P.N., Scheckel, K.G., Feldmann, J., Raab, A., Zhu, Y., Islam, R., Speciation and localization of arsenic in white and brown rice grains (2008) Environ. Sci. Technol., 42, pp. 1051-1057; Moore, K.L., Schröder, M., Lombi, E., Zhao, F.-J., McGrath, S.P., Hawkesford, M.J., Shewry, P.R., Grovenor, C.R.M., NanoSIMS analysis of arsenic and selenium in cereal grain (2010) New. Phytol., 185, pp. 434-445; Moore, K.L., Zhao, F.-J., Gritsch, C.S., Tosi, P., Hawkesford, M.J., McGrath, S.P., Shewry, P.R., Grovenor, C.R.M., Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry (2012) J.Cereal Sci., 55, pp. 183-187; Nozoye, T., Inoue, H., Takahashi, M., Ishimaru, Y., Nakanishi, H., Mori, S., Nishizawa, N., The expression of iron homeostasis-related genes during rice germination (2007) Plant Mol. Biol., 64, pp. 35-47; Paterson, D.J., de Jonge, M.D., Howard, D.L., McKinlay, W.L.J., Starritt, A., Kusel, M., Ryan, C.G., Siddons, D.P., The X-ray fluorescence microscopy beamline at the Australian Synchrotron (2011) AIP Conf. Proc., 1365, pp. 219-222; Prom-u-thai, C., Dell, B., Thomson, G., Rerkasem, B., Easy and rapid detection of iron in rice grain (2003) ScienceAsia, 29, pp. 203-207; Regvar, M., Eichert, D., Kaulich, B., Gianoncelli, A., Pongrac, P., Vogel-Mikus, K., Kreft, I., New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy (2011) J.Exp. Bot., 62, pp. 3929-3939; Schneider, T., Persson, D.P., Husted, S., Schellenberg, M., Gehrig, P., Lee, Y., Martinoia, E., Meyer, S., Aproteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer (2012) Plant J., 73, pp. 131-142; Schuler, M., Rellán-Álvarez, R., Fink-Straube, C., Abadía, J., Bauer, P., Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis (2012) Plant Cell., 24, pp. 2380-2400; Smart, K.E., Smith, J.A.C., Kilburn, M.R., Martin, B.G.H., Hawes, C., Grovenor, C.R.M., High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry (2010) Plant J., 63, pp. 870-879; Takahashi, M., Nozoye, T., Kitajima, N., Fukuda, N., Hokura, A., Terada, Y., Nakai, I., Nishizawa, N.K., Invivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu (2009) Plant Soil., 325, pp. 39-51; Vogt, S., MAPS: a set of software tools for analysis and visualization of 3D X-ray fluorescence data sets (2003) J.Phys. IV Fr., 104, pp. 635-638; von Wirén, N., Klair, S., Bansal, S., Briat, J.-F., Khodr, H., Shioiri, T., Leigh, R.A., Hider, R.C., Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants (1999) Plant Physiol., 119, pp. 1107-1114; Wada, T., Lott, J.N.A., Light and electron microscopic and energy dispersive X-ray microanalysis studies of globoids in protein bodies of embryo tissues and the aleurone layer of rice (Otyza sativa L.) grains (1997) Can. J. Bot., 75, pp. 1137-1147; Wirth, J., Poletti, S., Aeschlimann, B., Yakandawala, N., Drosse, B., Osorio, S., Tohge, T., Sautter, C., Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin (2009) Plant Biotechnol. J., 7, pp. 631-644; Yoshida, K.T., Wada, T., Koyama, H., Mizobuchi-Fukuoka, R., Naito, S., Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice (1999) Plant Physiol., 119, pp. 65-72
PY - 2014
Y1 - 2014
N2 - Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.
AB - Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.
KW - Bioavailability
KW - Biofortification
KW - IP6
KW - Phytate
U2 - 10.1016/j.jcs.2013.12.006
DO - 10.1016/j.jcs.2013.12.006
M3 - Article
VL - 59
SP - 173
EP - 180
JO - Journal of Cereal Science
JF - Journal of Cereal Science
SN - 0733-5210
IS - 2
ER -