Loss of Rassf1a cooperates with ApcMin to accelerate intestinal tumourigenesis

L. Van Der Weyden, M. J. Arends, O. M. Dovey, H. L. Harrison, G. Lefebvre, N. Conte, F. V. Gergely, A. Bradley, D. J. Adams

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Promoter methylation of the RAS-association domain family 1, isoform A gene (RASSF1A) is one of the most frequent events found in human tumours. In this study we set out to test the hypothesis that loss of Rassf1a can cooperate with inactivation of the adenomatous polyposis coli (Apc) gene to accelerate intestinal tumourigenesis using the Apc-Min (ApcMin/+) mouse model, as mutational or deletional inactivation of APC is a frequent early event in the genesis of intestinal cancer. Further, loss of RASSF1A has also been reported to occur in premalignant adenomas of the bowel. RASSF1A has been implicated in an array of pivotal cellular processes, including regulation of the cell cycle, apoptosis, microtubule stability and most recently in the β-catenin signalling pathway. By interbreeding isoform specific Rassf1a knockout mice with Apc+/Min mice, we showed that loss of Rassf1a results in a significant increase in adenomas of the small intestine and accelerated intestinal tumourigenesis leading to the earlier death of adenocarcinoma-bearing mice and decreased overall survival. Comparative genomic hybridization of adenomas from Rassf1a-/-; Apc+/Min mice revealed no evidence of aneuploidy or gross chromosomal instability (no difference to adenomas from Rassf1a+/+; Apc+/Min mice). Immunohistochemical analysis of adenomas revealed increased nuclear β-catenin accumulation in adenomas from Rassf1a-/-; Apc +/Min mice, compared to those from Rassf1a+/+; Apc +/Min mice, but no differences in proliferation marker (Ki67) staining patterns. Collectively these data demonstrate cooperation between inactivation of Rassf1a and Apc resulting in accelerated intestinal tumourigenesis, with adenomas showing increased nuclear accumulation of β-catenin, supporting a mechanistic link via loss of the known interaction of Rassf1 with β-TrCP that usually mediates degradation of β-catenin. © 2008 Macmillan Publishers Limited All rights reserved.
    Original languageEnglish
    Pages (from-to)4503-4508
    Number of pages5
    JournalOncogene
    Volume27
    Issue number32
    DOIs
    Publication statusPublished - 24 Jul 2008

    Keywords

    • β-catenin
    • Adenocarcinoma
    • Adenoma
    • APC
    • RASSF

    Fingerprint

    Dive into the research topics of 'Loss of Rassf1a cooperates with ApcMin to accelerate intestinal tumourigenesis'. Together they form a unique fingerprint.

    Cite this