Abstract
Aims. Numerous planetary nebulae show complicated inner structures not obviously explained. For one such object we undertake a detailed 3D photoionization and kinematical model analysis for a better understanding of the underlying shaping processes.
Methods. We obtained 2D ARGUS/IFU spectroscopy covering the whole nebula in selected, representative emission lines. A 3D photoionization modelling was used to compute images and line profiles. Comparison of the observations with the models was used to fine-tune the model details. This predicts the approximate nebular 3D structure and kinematics.
Results. We found that within a cylindrical outer nebula there is a hidden, very dense, bar-like or cylindrical inner structure. Both features are co-axial and are inclined to the sky by 40 deg. A wide asymmetric one-sided plume attached to one end of the bar is proposed to be a flat structure. All nebular components share the same kinematics, with an isotropic velocity field which monotonically increases with distance from the star before reaching a plateau. The relatively low velocities indicate that the observed shapes do not require particularly energetic processes and there is no indication for the current presence of a jet. The 3D model reproduces the observed line ratios and the detailed structure of the object significantly better than previous models.
Methods. We obtained 2D ARGUS/IFU spectroscopy covering the whole nebula in selected, representative emission lines. A 3D photoionization modelling was used to compute images and line profiles. Comparison of the observations with the models was used to fine-tune the model details. This predicts the approximate nebular 3D structure and kinematics.
Results. We found that within a cylindrical outer nebula there is a hidden, very dense, bar-like or cylindrical inner structure. Both features are co-axial and are inclined to the sky by 40 deg. A wide asymmetric one-sided plume attached to one end of the bar is proposed to be a flat structure. All nebular components share the same kinematics, with an isotropic velocity field which monotonically increases with distance from the star before reaching a plateau. The relatively low velocities indicate that the observed shapes do not require particularly energetic processes and there is no indication for the current presence of a jet. The 3D model reproduces the observed line ratios and the detailed structure of the object significantly better than previous models.
Original language | English |
---|---|
Article number | A17 |
Number of pages | 8 |
Journal | Astronomy & Astrophysics |
Volume | 689 |
Early online date | 27 Aug 2024 |
DOIs | |
Publication status | Published - 1 Sept 2024 |
Keywords
- planetary nebulae
- general – planetary nebulae
- individual
- H 2-18 (PN G 006.3+04.4)