Lyapunov exponent and topological entropy plateaus in piecewise linear maps

V Botella-Soler, J A Oteo, J Ros, P Glendinning

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We consider a two-parameter family of piecewise linear maps in which the moduli of the two slopes take different values. We provide numerical evidence of the existence of some parameter regions in which the Lyapunov exponent and the topological entropy remain constant. Analytical proof of this phenomenon is also given for certain cases. Surprisingly however, the systems with that property are not conjugate as we prove by using kneading theory.
    Original languageEnglish
    JournalJournal of Physics A: Mathematical and Theoretical
    Volume46
    Issue number12
    Publication statusPublished - 2013

    Fingerprint

    Dive into the research topics of 'Lyapunov exponent and topological entropy plateaus in piecewise linear maps'. Together they form a unique fingerprint.

    Cite this