Abstract
We report here on an ongoing experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides, with the emphasis on magnetic moments of mirror nuclei in far-from-stability regions. The nuclei are polarized by the tilted foil technique and the resulting 0–180○ βasymmetry is monitored as a function of rf frequency applied in an NMR setup. In order to achieve sufficiently high energy for transmission through the foils, the experimental setup is mounted on a high voltage platform. The first experiment in this program was the measurement of the βasymmetry and the NMR resonance for the ground state of 23Mg (I=3/2, T1/2=11.3 s), yielding μ=−0.533(6) nm. Improvements to the experimental setup are presently being designed, to be used in conjunction with the new developments at ISOLDE for obtaining high charge-state ions from the EBIS (REX-ISOLDE) ion source. This will help pave the way for measurements of magnetic moments of T=3/2 nuclei in the s–d shell and of T=1/2 f-shell nuclei. The study of relaxation times and other solid-state phenomena in semiconductors and other materials of interest using this technique is also contemplated.
Original language | English |
---|---|
Pages (from-to) | 109-118 |
Number of pages | 9 |
Journal | Hyperfine Interactions |
Volume | 129 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2000 |