TY - JOUR
T1 - Mast cells orchestrate type 2 immunity to helminths through regulation of tissue-derived cytokines.
AU - Hepworth, Matthew R
AU - Daniłowicz-Luebert, Emilia
AU - Rausch, Sebastian
AU - Metz, Martin
AU - Klotz, Christian
AU - Maurer, Marcus
AU - Hartmann, Susanne
PY - 2012/4/24
Y1 - 2012/4/24
N2 - Mast cells (MCs) are potent inflammatory cells that are distributed throughout mucosal barrier tissues and respond rapidly to pathogenic stimuli. During helminth infections, MCs play an important role as late-stage effectors. However, it is currently unknown whether MCs contribute to the early innate events that determine the priming of adaptive immunity. MC-deficient mouse strains and mice treated with the MC stabilizing agent cromolyn sodium had dramatically reduced Th2 priming and type 2 cytokine production and harbored increased parasite burdens following infection with gastrointestinal helminths (Heligmosomoides polygyrus bakeri and Trichuris muris). In addition, early production of the tissue-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) was significantly diminished in MC-deficient mice and resulted in decreased numbers of infection-elicited IL-25-dependent (Lin(-)CD45(-))CD34(+)Sca-1(+) progenitors, which produced type 2 cytokines and could be differentiated into mast cells ex vivo. Finally, repair of MC deficiency increased production of IL-25, IL-33, and TSLP, restored progenitor cell numbers and Th2 priming, and reduced parasite burden. Our data reveal an innate IgE-independent role for MCs in orchestrating type 2 immune responses via the regulation of IL-25, IL-33, and TSLP.
AB - Mast cells (MCs) are potent inflammatory cells that are distributed throughout mucosal barrier tissues and respond rapidly to pathogenic stimuli. During helminth infections, MCs play an important role as late-stage effectors. However, it is currently unknown whether MCs contribute to the early innate events that determine the priming of adaptive immunity. MC-deficient mouse strains and mice treated with the MC stabilizing agent cromolyn sodium had dramatically reduced Th2 priming and type 2 cytokine production and harbored increased parasite burdens following infection with gastrointestinal helminths (Heligmosomoides polygyrus bakeri and Trichuris muris). In addition, early production of the tissue-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) was significantly diminished in MC-deficient mice and resulted in decreased numbers of infection-elicited IL-25-dependent (Lin(-)CD45(-))CD34(+)Sca-1(+) progenitors, which produced type 2 cytokines and could be differentiated into mast cells ex vivo. Finally, repair of MC deficiency increased production of IL-25, IL-33, and TSLP, restored progenitor cell numbers and Th2 priming, and reduced parasite burden. Our data reveal an innate IgE-independent role for MCs in orchestrating type 2 immune responses via the regulation of IL-25, IL-33, and TSLP.
U2 - 10.1073/pnas.1112268109
DO - 10.1073/pnas.1112268109
M3 - Article
C2 - 22493240
SN - 1091-6490
VL - 109
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 17
ER -