TY - JOUR
T1 - Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node
AU - Zhang, H.
AU - Holden, A. V.
AU - Kodama, I.
AU - Honjo, H.
AU - Lei, M.
AU - Varghese, T.
AU - Boyett, M. R.
PY - 2000
Y1 - 2000
N2 - Mathematical models of the action potential in the periphery and center of the rabbit sinoatrial (SA) node have been developed on the basis of published experimental data. Simulated action potentials are consistent with those recorded experimentally: the model-generated peripheral action potential has a more negative takeoff potential, faster upstroke, more positive peak value, prominent phase 1 repolarization, greater amplitude, shorter duration, and more negative maximum diastolic potential than the model-generated central action potential. In addition, the model peripheral cell shows faster pacemaking. The models behave qualitatively the same as tissue from the periphery and center of the SA node in response to block of tetrodotoxin-sensitive Na+ current, L- and T-type Ca2+ currents, 4-aminopyridine-sensitive transient outward current, rapid and slow delayed rectifying K+ currents, and hyperpolarization-activated current. A one-dimensional model of a string of SA node tissue, incorporating regional heterogeneity, coupled to a string of atrial tissue has been constructed to simulate the behavior of the intact SA node. In the one-dimensional model, the spontaneous action potential initiated in the center propagates to the periphery at ~0.06 m/s and then into the atrial muscle at 0.62 m/s.
AB - Mathematical models of the action potential in the periphery and center of the rabbit sinoatrial (SA) node have been developed on the basis of published experimental data. Simulated action potentials are consistent with those recorded experimentally: the model-generated peripheral action potential has a more negative takeoff potential, faster upstroke, more positive peak value, prominent phase 1 repolarization, greater amplitude, shorter duration, and more negative maximum diastolic potential than the model-generated central action potential. In addition, the model peripheral cell shows faster pacemaking. The models behave qualitatively the same as tissue from the periphery and center of the SA node in response to block of tetrodotoxin-sensitive Na+ current, L- and T-type Ca2+ currents, 4-aminopyridine-sensitive transient outward current, rapid and slow delayed rectifying K+ currents, and hyperpolarization-activated current. A one-dimensional model of a string of SA node tissue, incorporating regional heterogeneity, coupled to a string of atrial tissue has been constructed to simulate the behavior of the intact SA node. In the one-dimensional model, the spontaneous action potential initiated in the center propagates to the periphery at ~0.06 m/s and then into the atrial muscle at 0.62 m/s.
KW - Computer modeling
KW - Heart
KW - Pacemaking
KW - Regional differences
M3 - Article
C2 - 10899081
SN - 0363-6135
VL - 279
SP - H397-H421
JO - American Journal of Physiology: Heart and Circulatory Physiology
JF - American Journal of Physiology: Heart and Circulatory Physiology
IS - 1
ER -