Maximum on a random time interval of a random walk with infinite mean

Research output: Contribution to journalArticlepeer-review

Abstract

Let ξ1,ξ2,… be independent, identically distributed random variables with infinite mean E[|ξ1|]=∞. Consider a random walk Sn=ξ1+⋯+ξn, a stopping time τ=min{n≥1:Sn≤0} and let Mτ=max0≤i≤τSi. We study the asymptotics for P(Mτ>x), as x→∞.
Original languageEnglish
JournalQueueing Systems
Early online date23 Jun 2020
DOIs
Publication statusE-pub ahead of print - 23 Jun 2020

Fingerprint

Dive into the research topics of 'Maximum on a random time interval of a random walk with infinite mean'. Together they form a unique fingerprint.

Cite this