TY - JOUR
T1 - Measurement Error Without the Proxy Exclusion Restriction
AU - Chalak, K.
AU - Kim, D.
PY - 2021
Y1 - 2021
N2 - This article studies the identification of the coefficients in a linear equation when data on the outcome, covariates, and an error-laden proxy for a latent variable are available. We maintain that the measurement error in the proxy is classical and relax the assumption that the proxy is excluded from the outcome equation. This enables the proxy to directly affect the outcome and allows for differential measurement error. Without the proxy exclusion restriction, we first show that the effects of the latent variable, the proxy, and the covariates are not identified. We then derive the sharp identification regions for these effects under any configuration of three auxiliary assumptions. The first weakens the assumption of no measurement error by imposing an upper bound on the noise-to-signal ratio. The second imposes an upper bound on the outcome equation coefficient of determination that would obtain had there been no measurement error. The third weakens the proxy exclusion restriction by specifying whether the latent variable and its proxy affect the outcome in the same or the opposite direction, if at all. Using the College Scorecard aggregate data, we illustrate our framework by studying the financial returns to college selectivity and characteristics and student characteristics when the average SAT score at an institution may directly affect earnings and serves as a proxy for the average ability of the student cohort.
AB - This article studies the identification of the coefficients in a linear equation when data on the outcome, covariates, and an error-laden proxy for a latent variable are available. We maintain that the measurement error in the proxy is classical and relax the assumption that the proxy is excluded from the outcome equation. This enables the proxy to directly affect the outcome and allows for differential measurement error. Without the proxy exclusion restriction, we first show that the effects of the latent variable, the proxy, and the covariates are not identified. We then derive the sharp identification regions for these effects under any configuration of three auxiliary assumptions. The first weakens the assumption of no measurement error by imposing an upper bound on the noise-to-signal ratio. The second imposes an upper bound on the outcome equation coefficient of determination that would obtain had there been no measurement error. The third weakens the proxy exclusion restriction by specifying whether the latent variable and its proxy affect the outcome in the same or the opposite direction, if at all. Using the College Scorecard aggregate data, we illustrate our framework by studying the financial returns to college selectivity and characteristics and student characteristics when the average SAT score at an institution may directly affect earnings and serves as a proxy for the average ability of the student cohort.
KW - College characteristics
KW - Differential measurement error
KW - Exclusion restriction
KW - Partial identification
KW - Proxy
KW - Sensitivity analysis
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85068240958&partnerID=MN8TOARS
U2 - 10.1080/07350015.2019.1617156
DO - 10.1080/07350015.2019.1617156
M3 - Article
SN - 0735-0015
JO - Journal of Business and Economic Statistics
JF - Journal of Business and Economic Statistics
ER -