Measuring multiple neurochemicals and related metabolites in blood and brain of the rhesus monkey by using dual microdialysis sampling and capillary hydrophilic interaction chromatography-mass spectrometry

Juan Li, Veronika Von Pföstl, Daniel Zaldivar, Xiaozhe Zhang, Nikos Logothetis, Alexander Rauch

    Research output: Contribution to journalArticlepeer-review

    Abstract

    In vivo measurement of multiple functionally related neurochemicals and metabolites (NMs) is highly interesting but remains challenging in the field of basic neuroscience and clinical research. We present here an analytical method for determining five functionally and metabolically related polar substances, including acetylcholine (quaternary ammonium), lactate and pyruvate (organic acids), as well as glutamine and glutamate (amino acids). These NMs are acquired from samples of the brain and the blood of non-human primates in parallel by dual microdialysis, and subsequently analyzed by a direct capillary hydrophilic interaction chromatography (HILIC)-mass spectrometry (MS) based method. To obtain high sensitivity in electrospray ionization (ESI)-MS, lactate and pyruvate were detected in negative ionization mode whereas the other NMs were detected in positive ionization mode during each HILIC-MS run. The method was validated for linearity, the limits of detection and quantification, precision, accuracy, stability and matrix effect. The detection limit of acetylcholine, lactate, pyruvate, glutamine, and glutamate was 150 pM, 3 μM, 2 μM, 5 nM, and 50 nM, respectively. This allowed us to quantitatively and simultaneously measure the concentrations of all the substances from the acquired dialysates. The concentration ratios of both lactate/pyruvate and glutamine/glutamate were found to be higher in the brain compared to blood (p∈
    Original languageEnglish
    Pages (from-to)2545-2554
    Number of pages9
    JournalAnalytical and bioanalytical chemistry
    Volume402
    Issue number8
    DOIs
    Publication statusPublished - Mar 2012

    Keywords

    • Blood
    • Brain
    • HILIC-MS
    • Microdialysis
    • Neurochemicals
    • Rhesus monkey

    Fingerprint

    Dive into the research topics of 'Measuring multiple neurochemicals and related metabolites in blood and brain of the rhesus monkey by using dual microdialysis sampling and capillary hydrophilic interaction chromatography-mass spectrometry'. Together they form a unique fingerprint.

    Cite this