TY - JOUR
T1 - Mechanical loading activates the YAP/TAZ pathway and chemokine expression in the MLO-Y4 osteocyte-like cell line
AU - Zarka, Mylene
AU - Etienne, Francois
AU - Bourmaud, Morgane
AU - Szondi, Denis
AU - Schwartz, Jean-Marc
AU - Kampmann, Kristine
AU - Helary, Christophe
AU - Rannou, Francois
AU - Haÿ, Eric
AU - Cohen-Solal, Martine
N1 - © 2021. The Author(s), under exclusive licence to United States and Canadian Academy of Pathology.
PY - 2021/9/14
Y1 - 2021/9/14
N2 - Osteocytes are mechanosensitive cells that control bone remodeling in response to mechanical loading. To date, specific signaling pathways modulated by mechanical loading in osteocytes are not well understood. Yes associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), the main effectors of the Hippo pathway, are reported to play a role in mechanotransduction and during osteoblastogenesis. Here, we hypothesized that YAP/TAZ signaling mediates osteocyte mechanosensing to target genes of the bone remodeling process. We aimed to investigate the contribution of YAP/TAZ in modulating the gene expression in an osteocyte-like cell line MLO-Y4. We developed a 3D osteocyte compression culture model from an MLO-Y4 osteocyte cell line embedded in concentrated collagen hydrogel. 3D-mechanical loading led to the increased expression of mechanosensitive genes and a subset of chemokines, including M-csf, Cxcl1, Cxcl2, Cxcl3, Cxcl9, and Cxcl10. The transcription regulators YAP and TAZ translocated to the nucleus and upregulated their target genes and proteins. RNAseq analysis revealed that YAP/TAZ knockdown mediated the regulation of several genes including osteocyte dendrite formation. Use of YAP/TAZ knockdown partially blunted the increase in M-csf and Cxcl3 levels in response to MLO-Y4 compression. These findings demonstrate that YAP/TAZ signaling is required for osteocyte-like cell mechano-transduction, regulates the gene expression profiles and controls chemokine expression.
AB - Osteocytes are mechanosensitive cells that control bone remodeling in response to mechanical loading. To date, specific signaling pathways modulated by mechanical loading in osteocytes are not well understood. Yes associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), the main effectors of the Hippo pathway, are reported to play a role in mechanotransduction and during osteoblastogenesis. Here, we hypothesized that YAP/TAZ signaling mediates osteocyte mechanosensing to target genes of the bone remodeling process. We aimed to investigate the contribution of YAP/TAZ in modulating the gene expression in an osteocyte-like cell line MLO-Y4. We developed a 3D osteocyte compression culture model from an MLO-Y4 osteocyte cell line embedded in concentrated collagen hydrogel. 3D-mechanical loading led to the increased expression of mechanosensitive genes and a subset of chemokines, including M-csf, Cxcl1, Cxcl2, Cxcl3, Cxcl9, and Cxcl10. The transcription regulators YAP and TAZ translocated to the nucleus and upregulated their target genes and proteins. RNAseq analysis revealed that YAP/TAZ knockdown mediated the regulation of several genes including osteocyte dendrite formation. Use of YAP/TAZ knockdown partially blunted the increase in M-csf and Cxcl3 levels in response to MLO-Y4 compression. These findings demonstrate that YAP/TAZ signaling is required for osteocyte-like cell mechano-transduction, regulates the gene expression profiles and controls chemokine expression.
U2 - 10.1038/s41374-021-00668-5
DO - 10.1038/s41374-021-00668-5
M3 - Article
C2 - 34521992
SN - 0023-6837
VL - 101
SP - 1597
EP - 1604
JO - Laboratory Investigation
JF - Laboratory Investigation
IS - 12
ER -