TY - JOUR
T1 - Mechanisms of estrogen receptor action in the myocardium: Rapid gene activation via the ERK1/2 pathway and serum response elements
AU - De Jager, Tertia
AU - Pelzer, Theo
AU - Müller-Botz, Stephan
AU - Imam, Asiya
AU - Muck, Jenny
AU - Neyses, Ludwig
PY - 2001/7/27
Y1 - 2001/7/27
N2 - We have previously shown that the myocardium is a target tissue for estrogen. Here, we have identified rapid non-nuclear estrogen effects on the expression of the early growth response gene-1 (Egr-1) in cardiomyocytes. Egr-1 mRNA and protein were rapidly and strongly induced by estrogen in an estrogen receptor-dependent manner via the extracellular signal-regulated kinase, ERK1/2. A promoter analysis study of a 1.2-kilobase Egr-1 promoter fragment revealed that the serum response elements (SREs) but not the estrogen response elements or AP-1 sites are responsible for Egr-1 induction by estrogen, identifying a novel mechanism of estrogen receptor-dependent gene activation in the myocardium. Both estrogen receptor-α and -β induced the Egr-1 promoter via the SREs as well as an artificial promoter consisting of only five SREs in cardiomyocytes. Electrophoretic mobility shift assays showed that a protein complex containing serum response factor or an antigenically related protein was recruited to the SREs by estrogen treatment of primary cardiomyocytes. The recruitment of the protein complex was inhibited by the specific estrogen receptor antagonist ICI 182,780 as well as the MEK inhibitor PD 98059. Taken together, these results identify SREs as important promoter control elements for an estrogen receptor-dependent mechanism of gene activation in the myocardium.
AB - We have previously shown that the myocardium is a target tissue for estrogen. Here, we have identified rapid non-nuclear estrogen effects on the expression of the early growth response gene-1 (Egr-1) in cardiomyocytes. Egr-1 mRNA and protein were rapidly and strongly induced by estrogen in an estrogen receptor-dependent manner via the extracellular signal-regulated kinase, ERK1/2. A promoter analysis study of a 1.2-kilobase Egr-1 promoter fragment revealed that the serum response elements (SREs) but not the estrogen response elements or AP-1 sites are responsible for Egr-1 induction by estrogen, identifying a novel mechanism of estrogen receptor-dependent gene activation in the myocardium. Both estrogen receptor-α and -β induced the Egr-1 promoter via the SREs as well as an artificial promoter consisting of only five SREs in cardiomyocytes. Electrophoretic mobility shift assays showed that a protein complex containing serum response factor or an antigenically related protein was recruited to the SREs by estrogen treatment of primary cardiomyocytes. The recruitment of the protein complex was inhibited by the specific estrogen receptor antagonist ICI 182,780 as well as the MEK inhibitor PD 98059. Taken together, these results identify SREs as important promoter control elements for an estrogen receptor-dependent mechanism of gene activation in the myocardium.
U2 - 10.1074/jbc.M010984200
DO - 10.1074/jbc.M010984200
M3 - Article
SN - 1083-351X
VL - 276
SP - 27873
EP - 27880
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 30
ER -